Hdu 2157 How many ways??(DP||矩阵乘法)
How many ways??
Time Limit:1000 MS Memory Limit: 32768 K
Problem Description
春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室, 但是由于时间问题, 每次只能经过k个地方, 比方说, 这次葱头决定经过2个地方, 那他可以先去问鼎广场看看喷泉, 再去教室, 也可以先到体育场跑几圈, 再到教室. 他非常想知道, 从A 点恰好经过k个点到达B点的方案数, 当然这个数有可能非常大, 所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦
Input
输入数据有多组, 每组的第一行是2个整数 n, m(0 < n <= 20, m <= 100) 表示校园内共有n个点, 为了方便起见, 点从0到n-1编号,接着有m行, 每行有两个整数 s, t (0<=s,t< n) 表示从s点能到t点, 注意图是有向的.接着的一行是两个整数T,表示有T组询问(1<=T<=100),
接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 可以走重复边。如果不存在这样的走法, 则输出0
当n, m都为0的时候输入结束
Output
计算每次询问的方案数, 由于走法很多, 输出其对1000取模的结果
Sample Input
4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
Sample Output
2
0
1
3
Author
小黑
Source
2008信息工程学院集训队——选拔赛
/*
DP做法.
dp[i][j]表示到i点走了j步的方案数.
dp[i][j]=∑dp[k][j-1](a[k][i]=true).
复杂度O(N^2KT).
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXN 101
#define mod 1000
using namespace std;
int a[MAXN][MAXN],n,m,t,dp[MAXN][MAXN];
int main()
{
int x,y,K;
while(~scanf("%d%d",&n,&m))
{
if(!n&&!m) break;
memset(a,0,sizeof a);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
x++,y++;
a[x][y]=1;
}
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&x,&y,&K);
memset(dp,0,sizeof dp);
x++,y++;
dp[x][0]=1;
for(int k=1;k<=K;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j) continue;
dp[i][k]=(dp[i][k]+dp[j][k-1]*a[j][i])%mod;
}
printf("%d\n",dp[y][K]);
}
}
return 0;
}
/*
矩阵乘法,图论.
对邻接矩阵作k次幂相乘.
自乘K次后ans[i][j]表示
从i到j经过K-1个点(路径长度为K)的方案数.
复杂度O(N^3Log2kT)
but 蜜汁T 复杂度完全可以啊啊啊啊啊.
*/
#include<cstdio>
#define MAXN 101
#define mod 1000
using namespace std;
int n,m,ans[MAXN][MAXN],b[MAXN][MAXN],c[MAXN][MAXN],s[MAXN][MAXN];
void mi(int k)
{
while(k)
{
if(k&1)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j])%mod;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j])%mod;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
b[i][j]=c[i][j],c[i][j]=0;
k>>=1;
}
}
int main()
{
int x,y,t,K;
while(true)
{
scanf("%d%d",&n,&m);
if(!n&&!m) break;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
x++,y++;
s[x][y]=ans[x][y]=b[x][y]=1;
}
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&x,&y,&K);
x++,y++;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=b[i][j]=s[i][j];
K--;
mi(K);
printf("%d\n",ans[x][y]);
}
}
return 0;
}
Hdu 2157 How many ways??(DP||矩阵乘法)的更多相关文章
- HDU 2157 How many ways??:矩阵快速幂【i到j共经过k个节点的方法数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157 题解: 给你一个有向图,n个节点m条边,问你从i到j共经过k个节点的方法数(不算i点). 题解: ...
- HDU 2157 How many ways?? 【矩阵经典8】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2157 How many ways?? Time Limit: 2000/1000 MS (Java/Ot ...
- HDU 2157 How many ways?【矩阵快速幂】
题目 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线 ...
- 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法
题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...
- 【bzoj3329】Xorequ 数位dp+矩阵乘法
题目描述 输入 第一行一个正整数,表示数据组数据 ,接下来T行每行一个正整数N 输出 2*T行第2*i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的解, 样例输入 1 1 样例 ...
- HDU 5607 graph(DP+矩阵乘法)
[题目链接] http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=663&pid=1002 [题意] 给定一个有向 ...
- hdu 2157 How many ways?? ——矩阵十题第八题
Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, ...
- ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)
We consider problems concerning the number of ways in which a number can be written as a sum. If the ...
- HDU 5863 cjj's string game (矩阵乘法优化递推)
题目大意:用k种字符构建两个长度为n的字符串(每种字符有无限多个),要求对应位置字符相同的连续子串最长长度为m,问方法数. 其中k,n,m是输入,n(1<=n<=1000000000), ...
随机推荐
- grafana部署安装
部署grafana 在prometheus& grafana server节点部署grafana服务. 1. 下载&安装 # 下载 [root@prometheus ~]# cd /u ...
- Microsoft.AspNet.Identity 自定义使用现有的表—登录实现,aspnet.identity
Microsoft.AspNet.Identity是微软新引入的一种membership框架,也是微软Owin标准的一个实现.Microsoft.AspNet.Identity.EntityFrame ...
- java之hibernate之crud
这篇文章主要讲解: 1>.对Hibernate使用的一些简单封装: · 2>.在单元测试中,使用Hibernate的封装的工具进行增删改查的测试 1.目录结构展示 2.代码展示 2.0 配 ...
- Java File类与IO流
File 类 java.io.File 文件和目录路径名的抽象表示形式, 对文件或目录进行操作 构造方法: File(File parent, String child) : 根据 parent 抽象 ...
- centOS学习part5:oracle 11g安装之环境准备
0 前几篇依次向大家介绍了centOS的基本安装以及常用软件的安装配置,接下来我们将挑战的是oracle 11g的安装配置.与之前安装的软件不一样的是,由于oracle并非开源免费软件(需要向orac ...
- SpringBoot+SpringCloud+vue+Element开发项目——数据库设计
1.用户表(sys_user) CREATE TABLE `sys_user` ( `id` ) NOT NULL AUTO_INCREMENT COMMENT '编号', `name` ) NOT ...
- PowerDesigner 连接数据库,更新数据库;
首先:以管理员身份运行Powerdesigner 一.连接服务器的某个数据库: 点击新建数据源图标 选择数据源类型:用户数据源:这里说是只用于当前机器,实际局域网里的都可以. Successfully ...
- redis 异常 MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk
MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk. 解决方 ...
- expect脚本远程登录、远程执行命令和脚本传参简单用法
expect介绍: 最近想写一个自动化安装脚本,涉及到远程登录.分发文件包.远程执行命令等,其中少不了来回输入登录密码,交互式输入命令等,这样就大大降低了效率,那么有什么方法能解决呢?不妨试试expe ...
- python的continue和break
continue:表示终止当前循环,开始下一次循环 break:终止所有循环 s = 0 while s < 3: s += 1 print(s) continue#'@' print(abc) ...