[LuoguP2158][SDOI2008]仪仗队
[LuoguP2158][SDOI2008]仪仗队(Link)
现在你有一个\(N \times N\)的矩阵,求你站在\((1,1)\)点能看到的点的总数。
很简洁的题面。
这道题看起来很难,但是稍加分析还是可以看出做法的。
首先我们知道当一个点不能被看到,当且仅当有另外一个点的斜率与它相同且横坐标值小于它。因此假设有两个点\((X1, Y1)(X2, Y2)\)都能被看到,那么一定有\(k_1 ≠ k_2\),那么就是\(\frac{Y1}{X1} ≠ \frac{Y2}{X2}\),那么我们思考可以发现只要\(gcd(X, Y) == 1\)那么就绝对可以看到。那么我们要求的就是横坐标和纵坐标互质的点的个数。那么只要求一下\(\sum_{i= 1}^{N} φ(i)\)然后再加上一个\(1\)就可以了。当然,\(N==1 || 2\)的时候要另当考虑。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long LL ;
const int MAXN = 40010 ;
const int MAXM = 40010 ;
const int Inf = 0x7fffffff ;
int N, E[MAXN] ;
inline int Read() {
int X = 0, F = 1 ; char ch = getchar() ;
while (ch > '9' || ch < '0') F = (ch == '-' ? - 1 : 1), ch = getchar() ;
while (ch >= '0' && ch <= '9') X=(X<<1)+(X<<3)+(ch^48), ch = getchar() ;
return X * F ;
}
inline int Gdb(int X, int Y) {
int Ans = 1 ; while (Ans) {
Ans = X & Y ; X = Y, Y = Ans ;
} return X ;
}
inline void Euler() {
for (int i = 1 ; i <= N ; i ++)
E[i] = i ;
for (int i = 2 ; i <= N ; i ++) {
if (E[i] == i)
for (int j = i ; j <= N ; j += i)
E[j] = E[j] / i * (i - 1) ;
}
}
int main() {
N = Read() ; Euler() ;
if (N == 1){
puts("0") ; return 0 ;
}
if (N == 2) {
puts("2") ; return 0 ;
}
int Ans = 0 ;
for (int i = 1 ; i < N ; i ++)
Ans += E[i] ;
cout << Ans * 2 + 1 << endl ;
return 0 ;
}
[LuoguP2158][SDOI2008]仪仗队的更多相关文章
- [luoguP2158] [SDOI2008]仪仗队(数论)
传送门 可以看出 (i, j) 能被看到,(i * k, j * k) 都会被挡住 暴力 所以 gcd(i, j) == 1 的话 ans ++ 那么可以枚举一半(中轴对称),求解答案,只能拿30分 ...
- BZOJ 2190: [SDOI2008]仪仗队
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2689 Solved: 1713[Submit][Statu ...
- [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )
假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...
- P2158 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...
- 洛谷 P2158 [SDOI2008]仪仗队 解题报告
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- P2158/bzoj2190 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 欧拉函数 计算下三角的点数再*2+1 观察斜率,自行体会 #include<iostream> #include<cstdio> #in ...
- P2158 [SDOI2008]仪仗队 && 欧拉函数
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- [SDOI2008]仪仗队 (洛谷P2158)
洛谷题目链接:[SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视 ...
随机推荐
- PHP 获取当前类名、方法名、URL地址
1.PHP获取当前类名.方法名 __CLASS__ 获取当前类名 __FUNCTION__ 当前函数名(confirm) __METHOD__ 当前方法名 (bankcard::confir ...
- C#学习笔记(基础知识回顾)之枚举
一:枚举的含义 枚举是用户定义的整数类型.在声明一个枚举时,要指定该枚举的示例可以包含的一组可接受的值.还可以给值指定易于记忆的名称.个人理解就是为一组整数值赋予意义. 二:枚举的优势 2.1:枚举可 ...
- RESTORE DATABASE命令还原SQLServer 2005 数据库
--返回由备份集内包含的数据库和日志文件列表组成的结果集. --主要获得逻辑文件名 USE master RESTORE FILELISTONLY FROM DISK = 'g:\back.Bak' ...
- 浅谈ul布局以及table布局
我个人对于某些言论说要注重html语义化在布局中的应用,我反而不怎么感冒,试试兼容IE7&&项目期相对较赶的情况下,我还是推荐快速开发为主,兼容性强为主. 如果布局中需要用户边框,推荐 ...
- \n\r 转义字符
转义字符 意义 ASCII码值(十进制) \a 响铃(BEL) 007 \b 退格(BS) ,将当前位置移到前一列 008 \f 换页(FF),将当前位置移到下页开头 012 \n 换行(LF) ,将 ...
- 使用css实现三角符号
关于使用css制作三角符号,网上有很多的例子了,在这里只是为了详细的向各位解释一下三角符号的原理 下图,是一个长宽为100px,边框宽度为100px的一个元素,由此可见,在css中上下左右的边框相交处 ...
- bootstrap学习笔记(网页开发小知识)
这是我在学习Boostrap网页开发时遇到的主要知识点: 1.导航条navbar 添加.navbar-fixed-top类可以让导航条固定在顶部,固定的导航条会遮住页面上的其他内容,除非给<bo ...
- CSS 伪类(下)结构性伪类\UI伪类\动态伪类和其他伪类 valid check enable child required link visit
伪类选择器汇总伪类选择器有4种, 结构性伪类\UI伪类\动态伪类和其他伪类. 具体如下 结构性伪类选择器结构性伪类选择器它能够根据元素在文档中的位置选择元素, 这类元素都有个前缀":&q ...
- wampserver 更改www目录
现在大家基本上开发php的有很大一部分都在用Wampserver,今天来讲讲怎么更改默认的www目录, 需要修改的文件有三个 apache2的配置文件 httpd.conf 和 Wampserver的 ...
- JS 计算时间差,(引入外部字体文件)
JavaScript Date() 对象: new Date() :时间对象,会把当前时间作为其初始值: setFullYear() :用于设置月份,可有三个参数,setFullYear(year,m ...