UVA - 11178-Morley’s Theorem

就是给出一个等边三角形的三个顶点坐标
然后每一个角的三等分线会交错成一个三角形,求出这个三角形的顶点坐标
一開始。我题意理解错了……还以为是随意三角形,所以代码可以处理随意三角形的情况
我的做法:
通过旋转点的位置得到这些三等分线的直线方程,然后用高斯消元求交点
我的代码:
#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator -(const dot &a){return dot(x-a.x,y-a.y);}
dot operator +(const dot &a){return dot(x+a.x,y+a.y);}
double mod(){return sqrt(pow(x,2)+pow(y,2));}
double mul(const dot &a){return x*a.x+y*a.y;}
};
void gauss(double a[10][10])
{
int i,j,k,t,n=2;
for(i=0;i<n;i++)
{
t=i;
for(j=i+1;j<n;j++)
if(fabs(a[j][i])>fabs(a[t][i]))
t=i;
if(i!=t)
for(j=i;j<=n;j++)
swap(a[i][j],a[t][j]);
if(a[i][i]!=0)
for(j=i+1;j<n;j++)
for(k=n;k>=i;k--)
a[j][k]-=a[j][i]/a[i][i]*a[i][k];
}
for(i=n-1;i>-1;i--)
{
for(j=i+1;j<n;j++)
a[i][n]-=a[i][j]*a[j][n];
a[i][n]/=a[i][i];
}
}
dot ro(dot a,dot b,double c)
{
a=a-b;
a=dot(a.x*cos(c)-a.y*sin(c),a.x*sin(c)+a.y*cos(c));
return a+b;
}
int main()
{
pair<dot,dot>t;
dot a[3];
double b,c[10][10];
int n,i;
cin>>n;
while(n--)
{
for(i=0;i<3;i++)
scanf("%lf%lf",&a[i].x,&a[i].y); t.first=a[0]-a[1];t.second=a[2]-a[1];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[1];t.second=ro(a[2],a[1],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[1]-a[2];t.second=a[0]-a[2];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[2];t.second=ro(a[0],a[2],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf ",c[0][2],c[1][2]); t.first=a[1]-a[2];t.second=a[0]-a[2];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[2];t.second=ro(a[0],a[2],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[1]-a[0];t.second=a[2]-a[0];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[0];t.second=ro(a[1],a[0],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf ",c[0][2],c[1][2]); t.first=a[1]-a[0];t.second=a[2]-a[0];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[0];t.second=ro(a[1],a[0],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[0]-a[1];t.second=a[2]-a[1];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[1];t.second=ro(a[2],a[1],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf\n",c[0][2],c[1][2]);
}
}
原题:
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers
. This six integers actually indicates that the Cartesian coordinates of point A, B and C are
respectively. You can assume that the area of triangle ABC is not equal to zero,
and the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers
separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are
respectively. Errors less than
will be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
Source
option=com_onlinejudge&Itemid=8&category=44">
Shahriar Manzoor
Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D ::
Examples
UVA - 11178-Morley’s Theorem的更多相关文章
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- UVa 11178 Morley's Theorem (几何问题)
题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便, ...
- 简单几何(求交点) UVA 11178 Morley's Theorem
题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
随机推荐
- Vue的响应式规则
对象属性的响应规则 <body> <div id="root"> {{msg}} </div> </body> <script ...
- [学习笔记]一个实例理解Lingo的灵敏性分析
一个实例理解Lingo的灵敏性分析 线性规划问题的三个重要概念: 最优解就是反应取得最优值的决策变量所对应的向量. 最优基就是最优单纯形表的基本变量所对应的系数矩阵如果其行列式是非 ...
- cocos2d中的anchorPoint属性详解
原文地址:http://www.tuicool.com/articles/ANVjMj 1> anchorPoint对position的影响 anchorPoint的作用就是相当于确定在子节点的 ...
- 降维算法-PCA主成分分析
1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1 ...
- ThreadLocal 的分析
http://blog.csdn.net/LHQJ1992/article/details/52451136 个人感觉这是所有关于ThreadLocal里中最靠谱的一篇文章. ps:其实官方文档才是最 ...
- Hibernate 框架理解
Hibernate框架简化了java应用程序与数据库交互的开发.Hibernate是一个开源,轻量级的ORM(对象关系映射)工具. ORM工具简化浏览数据的创建,数据处理和数据访问.它是将对象映射到数 ...
- luogu1345 [USACO5.4]奶牛的电信Telecowmunication
对于每个点,把它拆成有权值为1的边相连的两个点,原边是inf. 边的起点统一加n,ss也加n 这就成了最小割 #include <iostream> #include <cstrin ...
- wp8.1 sdk preview 预览版
http://pan.baidu.com/s/1hqyusja?qq-pf-to=pcqq.c2c#dir/path=%2FWPSDK%208.1%20DevPreview%20Installerwp ...
- php 修改
<?php$id = $_GET['id'];$db = new mysqli("localhost","root","root",& ...
- hdu2063 二分图匹配,匈牙利算法
#include <stdio.h> #include <string.h> int n1,n2,m,ans; ]; //记录V2中的点匹配的点的编号 ]; //记录V2中的每 ...