玩具装箱

【问题描述】

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

【输入格式】

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

【输出格式】

输出最小费用

【样例输入】

5 4

3

4
2
1
4

【样例输出】

1


题解:

设f[i]为选完前i个最小的费用

那么转移方程:

发现具有决策单调性

那么······

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define big long long
using namespace std;
struct Ti
{
int x, y, z;
}o[];
int n, m;
big s;
big sum[], f[];
big sqr(big x)
{
return x * x;
}
big Cal(big x, big y)
{
return f[x] + sqr(sum[y] - sum[x] + y - x - - m);
}
int Two(int x, int y, int z, int ss)
{
int l = x, r = y, mi;
while(l <= r)
{
mi = (l + r) >> ;
if(Cal(ss, mi) < Cal(z, mi)) r = mi - ;
else l = mi + ;
}
return l;
}
int main()
{
scanf("%d%d", &n , &m);
for(int i = ; i <= n; ++i)
{
scanf("%lld", &s);
sum[i] = sum[i - ] + s;
}
int t = , w = , cc;
o[] = (Ti) {, n, };
for(int i = ; i <= n; ++i)
{
if(i > o[t].y) ++t;
f[i] = Cal(o[t].z, i);
if(Cal(i, n) < Cal(o[w].z, n))
{
while(t <= w && Cal(i, o[w].x) < Cal(o[w].z, o[w].x)) --w;
if(t <= w)
{
cc = Two(o[w].x, o[w].y, o[w].z, i);
o[w].y = cc - ;
o[++w] = (Ti) {cc, n, i};
}
else o[++w] = (Ti) {i, n, i};
}
}
printf("%lld", f[n]);
}

玩具装箱 BZOJ 1010的更多相关文章

  1. 【BZOJ】【1010】【HNOI2008】玩具装箱Toy

    DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] ...

  2. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  4. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  5. 【斜率DP】BZOJ 1010:玩具装箱

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7537  Solved: 2888[Submit][St ...

  6. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  7. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  8. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  9. BZOJ 1010 (HNOI 2008) 玩具装箱

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Submit: 12665 Solved: 5540 [Submit][S ...

随机推荐

  1. 你是猴子请来的逗比么!IT跳槽大事件

       3月招聘大战早已硝烟四起,互联网职场摇身一变成了跳蚤市场,猎头们告诉跳蚤们,跳不跳不是不问题,往哪儿跳才是重点,跳对了高薪期权都如过眼云烟.不过小编不得不说,劳资最痛恨那些跳槽的人啦!就因为加班 ...

  2. (五)使用Docker镜像(上)

    1. 获取镜像 # 获取镜像 docker pull image:tag // 不使用tag 默认下载latest标签的镜像,即最新的镜像. 2. 查看镜像信息 # 查看镜像信息docker imag ...

  3. 理想路径——双向BFS

    题目 给n个点m条边(2 ≤ n ≤ 100000,1 ≤ m ≤ 200000)的无向图,每条边上都涂有一种颜色.求从结点1到结点n的一条路径,使得经过的边数尽量的少,在此前提下,经过边的颜色序列的 ...

  4. core 下使用 autofac

    依赖注入小伙伴们比较常了,这里只说core 下autofac依赖注入的使用 ,不多费话,直接代码. 在 Startup.cs里 public void ConfigureServices(IServi ...

  5. 计算机图形学(Conputer Graphics):非均匀有理B样条

    计算机图形学(Conputer Graphics):非均匀有理B样条 非均匀有理B样条(Non-Uniform Rational B-Spline)英文缩写,NURBS. 它是贝塞尔曲线的一个推广,而 ...

  6. python基础面试题整理---从零开始 每天十题(03)

    一.Q:用Python输出一个Fibonacci数列?(斐波那契额数列) A:我们先来看下代码 #!/usr/bin/env python # -*- coding: utf-8 -*- def fi ...

  7. myeclipse 导入项目时no projects are found to import解决办法

    myeclipse 识别一个工程需要.classpath与.project文件,一般无需提交SVN所以项目切下来的时候是没有这两个文件的. 方法1: 1) 在myeclipse中新建一个和你要导入的项 ...

  8. java集合测试类等

    package demo.mytest; import java.lang.ref.SoftReference;import java.lang.ref.WeakReference;import ja ...

  9. ios开发--常用的高效开发的宏

    本次在做项目的时候使用了下面的一些宏定义 以及 建立宏定义的一些规则.虽然只用了其中的一点点,但是还是极大的提高了开发效率.. 将这些宏放到一个头文件里然后再放到工程中,在需要使用这些宏定义的地方体检 ...

  10. js最高效的数组去重方法

    var arr=[1,2,33,2,4,5,33,5,7,8,1,3];var result=[];var temp={};for( var i=0;i<arr.length;i++){ if( ...