【题目大意】

香蕉森林里一群猴子(n<=1000)围成一圈开会,会长给他们互相介绍,每个猴子需要时间a[i]。每次只能介绍相邻的两只猴子x和y认识,同时x所有认识的猴子和y所有认识的猴子也就相互认识了,代价为这两伙猴子认识的时间(a[])之和。求这群猴子都互相认识的最短时间。

【思路】

四边形不等式笔记ψ(._. )>

四边形不等式标准转移方程格式:

W(i,j )要满足四边形不等式,当且仅当同时满足:
①j 不变时,f(i) = w(i, j + 1) - w(i, j)单调递减。
②i 不变时,f(j) = w(i + 1, j) - w(i, j)单调递减。

遇到环的问题就把原数组复制一遍,数组长度增加一倍。
dp[i][j]表示从i到j的猴子都是朋友的最小所需时间,sum[i]为前缀。
dp[i][j]=min(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]),其中w[i,j] =sum[j]-sum[i-1]。

显然满足四边形不等式o(* ̄︶ ̄*)o

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=+;
const int INF=0x7fffffff;
int n;
int a[MAXN*],sum[MAXN*];
int dp[MAXN*][MAXN*],s[MAXN*][MAXN*]; void init()
{
for (int i=;i<=n;i++)
{
scanf("%d",&a[i]);
a[i+n]=a[i];
}
sum[]=;
for (int i=;i<=*n;i++) sum[i]=sum[i-]+a[i];
} void solve()
{
memset(dp,,sizeof(dp));
memset(s,,sizeof(s));
for (int i=;i<=*n;i++) s[i][i]=i;
for (int i=*n;i>=;i--)
{
for (int j=i+;j<=*n;j++)
{
dp[i][j]=INF;
for (int k=s[i][j-];k<=s[i+][j];k++)
{
if (dp[i][j]>dp[i][k]+dp[k+][j]+sum[j]-sum[i-])
{
s[i][j]=k;
dp[i][j]=dp[i][k]+dp[k+][j]+sum[j]-sum[i-];
}
}
}
}
int ans=INF;
for (int i=;i<=n;i++) ans=min(ans,dp[i][i+n-]);
printf("%d\n",ans);
} int main()
{
while (scanf("%d",&n)!=EOF)
{
init();
solve();
}
return ;
}

【四边形不等式】HDU3506-Monkey Party的更多相关文章

  1. HDU 3506 DP 四边形不等式优化 Monkey Party

    环形石子合并问题. 有一种方法是取模,而如果空间允许的话(或者滚动数组),可以把长度为n个换拓展成长为2n-1的直线. #include <iostream> #include <c ...

  2. hdu3506 Monkey Party (区间dp+四边形不等式优化)

    题意:给n堆石子,每次合并相邻两堆,花费是这两堆的石子个数之和(1和n相邻),求全部合并,最小总花费 若不要求相邻,可以贪心地合并最小的两堆.然而要求相邻就有反例 为了方便,我们可以把n个数再复制一遍 ...

  3. hdu 3506 Monkey Party 区间dp + 四边形不等式优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...

  4. [学习笔记]四边形不等式优化DP

    形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w ...

  5. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  6. 石子合并(四边形不等式优化dp) POJ1160

    该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...

  7. UVa 10003 (可用四边形不等式优化) Cutting Sticks

    题意: 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用. 分析: d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用.则有d(i, j) = ...

  8. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  9. HDU 3516 Tree Construction (四边形不等式)

    题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...

  10. HDU 2829 Lawrence(动态规划-四边形不等式)

    Lawrence Problem Description T. E. Lawrence was a controversial figure during World War I. He was a ...

随机推荐

  1. 使sqoop能够启用压缩的一些配置

    在使用sqoop 将数据库表中数据导入至hdfs时 配置启用压缩 hadoop 的命令    检查本地库支持哪些  bin/hadoop checknative 需要配置native    要编译版本 ...

  2. APP爬虫之Appium使用

    一.安装环境 Appium安装(windows版) 一.安装node.js 1.到官网下载node.js:https://nodejs.org/en/download/ 2.获取到安装文件后,直接双击 ...

  3. 22、WebDriver

    什么是WebDriver?1.Webdriver(Selenium2)是一种用于Web应用程序的自动测试工具:2.它提供了一套友好的API:3.Webdriver完全就是一套类库,不依赖任何测试框架, ...

  4. JS日历控件特效代码layDate

    https://www.js-css.cn/a/jscode/date/2015/0405/1461.html

  5. ubuntu的su初始密码设置

    Ubuntu刚安装后,不能在terminal中运行su命令,因为root没有默认密码,需要手动设定. 以安装ubuntu时输入的用户名登陆,该用户在admin组中,有权限给root设定密码. 给roo ...

  6. 91.Decode Ways---dp

    题目链接:https://leetcode.com/problems/decode-ways/description/ 题目大意:将给出的字符串解码,问有多少种解码方式.解码按照“ABC...Z&qu ...

  7. Loadrunner脚本学习总结

    1.1      web脚本录制选择Web(HTTP/HTML)协议: 注意录制脚本前选择如下协议: 1.2      脚本如果需要使用如下函数: web_reg_save_param.web_fin ...

  8. Django 1.10文档中文版Part3

    目录 2.7 第一个Django app,Part 5:测试 2.7.1 自动化测试介绍 2.7.2 基本的测试策略 2.7.3 编写我们的第一个测试程序 2.7.4 测试一个视图 2.7.5 测试越 ...

  9. [ python ] 集合的使用

    集合的使用 可变数据类型,他里面的元素必须是不可变的数据类型,无序,不重复. 集合的增删查 集合是没有改这种说法的: (1)集合的元素无序的: (2)集合的元素为不可变类型  增加 add    为集 ...

  10. leetcode 之Valid Sudoku(七)

    判断行.列.九宫格内数字是否重复. 按照行.列.九宫格进行检查即可. bool validSudoku(const vector<vector<char>>& boar ...