1030: [JSOI2007]文本生成器

Time Limit: 1 Sec  Memory Limit: 162 MB

Submit: 2891  Solved: 1193

[Submit][Status][

id=1030" style="color:blue; text-decoration:none">Discuss]

Description

JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们如今使用的是GW文本生成器v6版。

该软件能够随机生成一些文章―――总是生成一篇长度固定且全然随机的文章—— 也就是说,生成的文章中每一个字节都是全然随机的。

假设一篇文章中至少包括使用者们了解的一个单词,那么我们说这篇文章是可读的(我们称文章a包括单词b。当且仅当单词b是文章a的子串)。可是。即使依照这种标准。使用者如今使用的GW文本生成器v6版所生成的文章也是差点儿全然不可读的。

ZYX须要指出GW文本生成器 v6生成的全部文本中可读文本的数量,以便可以成功获得v7更新版。

你能帮助他吗?

Input

输入文件的第一行包括两个正整数。各自是使用者了解的单词总数N (<= 60)。GW文本生成器 v6生成的文本固定长度M;下面N行。每一行包括一个使用者了解的单词。 这里全部单词及文本的长度不会超过100。而且仅仅可能包括英文大写字母A..Z  。

Output

一个整数,表示可能的文章总数。仅仅须要知道结果模10007的值。

Sample Input

2 2

A

B

Sample Output

100

HINT

Source

毕竟是自己做的第一道AC自己主动机题,还是小小地庆祝一下吧……

我们如果在Trie树中表示单词结尾的节点为结尾点。

在加入失配边后,Trie树就转化成一个有向图,问题也就转化成:从起点出发,走m步。至少路过一个结尾点的方案数。

这就能够用动态规划来实现了。

详细方法例如以下:

用f[i][j][0]表示走i步到达j点不经过结尾点的方案数,用f[i][j][1]表示走i步到达j点经过结尾点的方案数。

我们非常easy能够想到状态转移方程。

(详见程序)

终于答案为∑(i)f[m][i][1]。注意每次计算后都要取模。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define pa pair<int,int>
#define mod 10007
using namespace std;
int t[6010][26],f[110][6010][2],v[6010],go[6010];
int n,m,tot;
char s[110];
queue<int> q;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void insert()
{
scanf("%s",s+1);
int len=strlen(s+1),now=1;
F(i,1,len)
{
int x=s[i]-'A';
if (!t[now][x]) t[now][x]=++tot;
now=t[now][x];
}
v[now]=1;
}
inline void bfs()
{
q.push(1);
while (!q.empty())
{
int x=q.front(),y,j;q.pop();v[x]|=v[go[x]];
F(i,0,25)
{
j=go[x];
while (j&&!t[j][i]) j=go[j];
if (t[x][i])
{
go[y=t[x][i]]=j?t[j][i]:1;
q.push(y);
}
else t[x][i]=j? t[j][i]:1;
}
}
}
inline void dp()
{
f[0][1][0]=1;
F(i,0,m) F(j,1,tot) F(k,0,25) F(l,0,1)
{
if (v[t[j][k]]) (f[i+1][t[j][k]][1]+=f[i][j][l])%=mod;
else (f[i+1][t[j][k]][l]+=f[i][j][l])%=mod;
}
}
int main()
{
n=read();m=read();tot=1;
F(i,1,n) insert();
bfs();
dp();
int ans=0;
F(i,1,tot) (ans+=f[m][i][1])%=mod;
printf("%d\n",ans);
return 0;
}

bzoj1030【JSOI2007】文本生成器的更多相关文章

  1. BZOJ1030 JSOI2007 文本生成器 【AC自动机】【DP】*

    BZOJ1030 JSOI2007 文本生成器 Description JSOI交给队员ZYX一个任务,编制一个称之为"文本生成器"的电脑软件:该软件的使用者是一些低幼人群,他们现 ...

  2. bzoj1030 [JSOI2007]文本生成器

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2654  Solved: 1100[Submit][Stat ...

  3. [Bzoj1030][JSOI2007]文本生成器(AC自动机)(dp)

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5254  Solved: 2172[Submit][Stat ...

  4. [BZOJ1030] [JSOI2007] 文本生成器 (AC自动机 & dp)

    Description JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  5. BZOJ1030[JSOI2007]文本生成器——AC自动机+DP

    题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是生成一篇长度固 ...

  6. BZOJ1030: [JSOI2007]文本生成器(AC自动机)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5984  Solved: 2523[Submit][Status][Discuss] Descripti ...

  7. BZOJ1030: [JSOI2007]文本生成器(Trie图+dp)

    Description JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  8. [BZOJ1030]:[JSOI2007]文本生成器(AC自动机+DP)

    题目传送门 题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群, 他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  9. BZOJ1030 [JSOI2007]文本生成器 AC自动机 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1030 题意概括 给出n个模式串,问长度为m的串中有多少个至少含有这n个模式串中的任意一个. 注意, ...

  10. BZOJ1030 [JSOI2007]文本生成器[DP+AC自动机]

    我学到现在才是初三学弟的水平..哭 这里相当于求长度为$m$的,字符集$\{A...Z\}$的且不包含任一模式串的文本串个数.这是一个典型的AC自动机匹配计数问题. 设$f_{i,j}$表示在AC自动 ...

随机推荐

  1. NSL:SOFM神经网络实现预测哪个样本与哪个样本处在同一层,从而科学规避我国煤矿突水灾难—Jason niu

    load water_data.mat attributes = mapminmax(attributes); P_train = attributes(:,1:35); T_train = clas ...

  2. win 2012 安装Net35

    使用 PowerShell, 指定源文件路径然后进行安装: Install-WindowsFeature NET-Framework-Core –Source D:\Sources\sxs 使用命令提 ...

  3. string method and regular expresions

    <!doctype html> <!DOCTYPE html> <html> <head> <meta charset="utf-8&q ...

  4. tomcat修改端口号

    以前只知道当tomcat端口号冲突了如何修改tomcat默认的8080端口号 今天遇到个情况,装了个BO,自带个tomcat,这时就需要修改三个地方 修改Tomcat的端口号: 在默认情况下,tomc ...

  5. koa2框架设置响应和请求头

    https://koa.bootcss.com/#response 请耐心翻到网页下端,可以看到 设置响应头: ctx.set('Content-Type', 'application/zip') 添 ...

  6. redis(五)

    发布订阅 发布者不是计划发送消息给特定的接收者(订阅者),而是发布的消息分到不同的频道,不需要知道什么样的订阅者订阅 订阅者对一个或多个频道感兴趣,只需接收感兴趣的消息,不需要知道什么样的发布者发布的 ...

  7. .net异常处理

    很多情况下,我们通过开发的winform程序会crash掉,此问题大部分是因为有部分异常没有捕获处理导致的.我们可以通过注册下面两个异常处理,来捕获这些异常,并做特殊处理. Application.T ...

  8. boost::lockfree::queue多线程读写实例

    最近的任务是写一个多线程的东西,就得接触多线程队列了,我反正是没学过分布式的,代码全凭感觉写出来的,不过运气好,代码能够work= = 话不多说,直接给代码吧,一个多消费者,多生产者的模式.假设我的任 ...

  9. Python高级有关的题目

    1,copy模块 from copy import deepcopy dic = {} list = [] for i in range(10): dic["num"] = i i ...

  10. C#_02.12_基础二_.NET类型存储和变量

    C#_02.12_基础二_.NET类型存储和变量 一.核心一句:C#程序是一组类型声明(留待后面慢慢体会,现在不是很理解,不强说了) 二.数据类型: 1.预定义了16种数据类型: 其中13种简单数据类 ...