1030: [JSOI2007]文本生成器

Time Limit: 1 Sec  Memory Limit: 162 MB

Submit: 2891  Solved: 1193

[Submit][Status][

id=1030" style="color:blue; text-decoration:none">Discuss]

Description

JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们如今使用的是GW文本生成器v6版。

该软件能够随机生成一些文章―――总是生成一篇长度固定且全然随机的文章—— 也就是说,生成的文章中每一个字节都是全然随机的。

假设一篇文章中至少包括使用者们了解的一个单词,那么我们说这篇文章是可读的(我们称文章a包括单词b。当且仅当单词b是文章a的子串)。可是。即使依照这种标准。使用者如今使用的GW文本生成器v6版所生成的文章也是差点儿全然不可读的。

ZYX须要指出GW文本生成器 v6生成的全部文本中可读文本的数量,以便可以成功获得v7更新版。

你能帮助他吗?

Input

输入文件的第一行包括两个正整数。各自是使用者了解的单词总数N (<= 60)。GW文本生成器 v6生成的文本固定长度M;下面N行。每一行包括一个使用者了解的单词。 这里全部单词及文本的长度不会超过100。而且仅仅可能包括英文大写字母A..Z  。

Output

一个整数,表示可能的文章总数。仅仅须要知道结果模10007的值。

Sample Input

2 2

A

B

Sample Output

100

HINT

Source

毕竟是自己做的第一道AC自己主动机题,还是小小地庆祝一下吧……

我们如果在Trie树中表示单词结尾的节点为结尾点。

在加入失配边后,Trie树就转化成一个有向图,问题也就转化成:从起点出发,走m步。至少路过一个结尾点的方案数。

这就能够用动态规划来实现了。

详细方法例如以下:

用f[i][j][0]表示走i步到达j点不经过结尾点的方案数,用f[i][j][1]表示走i步到达j点经过结尾点的方案数。

我们非常easy能够想到状态转移方程。

(详见程序)

终于答案为∑(i)f[m][i][1]。注意每次计算后都要取模。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define pa pair<int,int>
#define mod 10007
using namespace std;
int t[6010][26],f[110][6010][2],v[6010],go[6010];
int n,m,tot;
char s[110];
queue<int> q;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void insert()
{
scanf("%s",s+1);
int len=strlen(s+1),now=1;
F(i,1,len)
{
int x=s[i]-'A';
if (!t[now][x]) t[now][x]=++tot;
now=t[now][x];
}
v[now]=1;
}
inline void bfs()
{
q.push(1);
while (!q.empty())
{
int x=q.front(),y,j;q.pop();v[x]|=v[go[x]];
F(i,0,25)
{
j=go[x];
while (j&&!t[j][i]) j=go[j];
if (t[x][i])
{
go[y=t[x][i]]=j?t[j][i]:1;
q.push(y);
}
else t[x][i]=j? t[j][i]:1;
}
}
}
inline void dp()
{
f[0][1][0]=1;
F(i,0,m) F(j,1,tot) F(k,0,25) F(l,0,1)
{
if (v[t[j][k]]) (f[i+1][t[j][k]][1]+=f[i][j][l])%=mod;
else (f[i+1][t[j][k]][l]+=f[i][j][l])%=mod;
}
}
int main()
{
n=read();m=read();tot=1;
F(i,1,n) insert();
bfs();
dp();
int ans=0;
F(i,1,tot) (ans+=f[m][i][1])%=mod;
printf("%d\n",ans);
return 0;
}

bzoj1030【JSOI2007】文本生成器的更多相关文章

  1. BZOJ1030 JSOI2007 文本生成器 【AC自动机】【DP】*

    BZOJ1030 JSOI2007 文本生成器 Description JSOI交给队员ZYX一个任务,编制一个称之为"文本生成器"的电脑软件:该软件的使用者是一些低幼人群,他们现 ...

  2. bzoj1030 [JSOI2007]文本生成器

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2654  Solved: 1100[Submit][Stat ...

  3. [Bzoj1030][JSOI2007]文本生成器(AC自动机)(dp)

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5254  Solved: 2172[Submit][Stat ...

  4. [BZOJ1030] [JSOI2007] 文本生成器 (AC自动机 & dp)

    Description JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  5. BZOJ1030[JSOI2007]文本生成器——AC自动机+DP

    题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是生成一篇长度固 ...

  6. BZOJ1030: [JSOI2007]文本生成器(AC自动机)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5984  Solved: 2523[Submit][Status][Discuss] Descripti ...

  7. BZOJ1030: [JSOI2007]文本生成器(Trie图+dp)

    Description JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  8. [BZOJ1030]:[JSOI2007]文本生成器(AC自动机+DP)

    题目传送门 题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群, 他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  9. BZOJ1030 [JSOI2007]文本生成器 AC自动机 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1030 题意概括 给出n个模式串,问长度为m的串中有多少个至少含有这n个模式串中的任意一个. 注意, ...

  10. BZOJ1030 [JSOI2007]文本生成器[DP+AC自动机]

    我学到现在才是初三学弟的水平..哭 这里相当于求长度为$m$的,字符集$\{A...Z\}$的且不包含任一模式串的文本串个数.这是一个典型的AC自动机匹配计数问题. 设$f_{i,j}$表示在AC自动 ...

随机推荐

  1. switch语句以及三种循环语句的总结

    1:switch语句(1)格式:switch(表达式) {case 值1:语句体1;break;case 值2:语句体2;break;...default:语句体n+1;break;} 格式解释说明: ...

  2. EF Core中的多对多映射如何实现?

    EF 6.X中的多对多映射是直接使用HasMany-HasMany来做的.但是到了EF Core中,不再直接支持这种方式了,可以是可以使用,但是不推荐,具体使用可以参考<你必须掌握的Entity ...

  3. Jenkins部署码云SpringBoot项目到远程服务器

    本文是上一篇文章的后续,上一篇只是利用Jenkins部署项目到本地,并启动,本文是将项目部署到远程服务器并执行. 1.环境准备 1.1 安装插件 上一篇文章已经介绍了需要安装的应用及插件,这一篇还需要 ...

  4. 实现左边div固定宽度,右边div自适应撑满剩下的宽度的布局方式:

    html: <div class="container"> <div class="left"> left固定宽度200px </ ...

  5. BZOJ.2000.[HNOI2010]stone取石头游戏(博弈)

    BZOJ 洛谷 低估这道神题了_(:з」∠)_ MilkyWay好狠啊(小声) \(Description\) 有一些数字,被分成若干双端队列(从两边都可以取)和最多两个栈(只能从某一边一个一个取)的 ...

  6. AGC 010D.Decrementing(博弈)

    题目链接 \(Description\) 给定\(n\)个数\(A_i\),且这\(n\)个数的\(GCD\)为\(1\).两个人轮流进行如下操作: 选择一个\(>1\)的数使它\(-1\). ...

  7. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  8. Java -- 内部类(一)

    什么是内部类 将一个类的定义放在另一个类的定义内部,这就是内部类.在Java中内部类主要分为成员内部类.局部内部类.匿名内部类.静态内部类.举个栗子: public class A { public ...

  9. IDEA中的常用设置

    ps:对于开发工具,不同的开发人员有不同的设置喜好,这里介绍的是我个人的配置,不喜勿喷. Appearance:个人喜欢全黑主题,雅黑字体 背景图片, 效果如下,编写代码的时候有个自己喜欢的背景图片, ...

  10. JavaScript基础笔记(十二)Ajax

    Ajax 一.XMLHttpRequest对象 一)XHR用法 var xhr = new XMLHttpRequest(); //open()方法,参数一:发送方法,参数二:请求的URL,参数三:是 ...