「Luogu 1349」广义斐波那契数列
Portal
Portal1: Luogu
Description
广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列。今给定数列的两系数\(p\)和\(q\),以及数列的最前两项\(a_1\)和\(a_2\),另给出两个整数\(n\)和\(m\),试求数列的第\(n\)项\(a_n\)除以\(m\)的余数。
Input
输入包含一行6个整数。依次是\(p\),\(q\),\(a_1\),\(a_2\),\(n\),\(m\),其中在\(p\),\(q\),\(a_1\),\(a_2\)整数范围内,\(n\)和\(m\)在长整数范围内。
Output
输出包含一行一个整数,即\(a_n\)除以\(m\)的余数。
Sample Input
1 1 1 1 10 7
Sample Output
6
Hint
数列第\(10\)项是\(55\),除以\(7\)的余数为\(6\)。
Solution
基本斐波那契数列矩阵是\(T = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}\);
广义斐波那契数列矩阵是\(F = \begin{bmatrix} p & 1 \\ q & 0 \end{bmatrix}\)。
那么要求的就是:
\]
然后就可以用矩阵快速幂来解决了。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
struct Matrix {
LL a[2][2];
inline void clear() {//矩阵清空
memset(a, 0, sizeof(a));
}
inline void init() {//单位矩阵
memset(a, 0, sizeof(a));
for (int i = 0; i < 2; i++)
a[i][i] = 1;
}
};
LL n, p, q, a1, a2, mod;
Matrix F, a, ans;
inline LL Plus(LL x, LL y) {
x += y;
if (x >= mod) x -= mod;
return x;
}
inline LL power(LL x, LL y) {//快速幂
LL ret = 0;
while (y) {
if (y & 1) ret = (ret + x) % mod;
x = (x + x) % mod;
y >>= 1;
}
return ret;
}
Matrix operator * (Matrix a, Matrix b) {//矩阵乘法
Matrix ret;
ret.clear();
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++)
ret.a[i][j] = Plus(ret.a[i][j] % mod, power(a.a[i][k], b.a[k][j])% mod) % mod;
return ret;
}
inline Matrix Matrix_Power(Matrix a, LL x) {//矩阵快速幂
Matrix ret;
ret.init();
while (x) {
if (x & 1) ret = ret * a;
x >>= 1;
a = a * a;
}
return ret;
}
int main() {
scanf("%lld%lld%lld%lld%lld%lld", &q, &p, &a1, &a2, &n, &mod);
F.a[0][0] = a1, F.a[0][1] = a2;
a.a[0][0] = 0, a.a[1][0] = 1, a.a[0][1] = p; a.a[1][1] = q;
ans = F * Matrix_Power(a, n - 2);
printf("%lld\n", ans.a[0][1] % mod);
return 0;
}
「Luogu 1349」广义斐波那契数列的更多相关文章
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- HDU 5451 广义斐波那契数列
这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- codevs1574广义斐波那契数列
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p* ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- BZOJ 2535: [Noi2010]Plane 航空管制2
Description 世博期间,上海的航空客运量大大超过了平时,随之而来的航空管制也频频发生.最近,小X就因为航空管制,连续两次在机场被延误超过了两小时.对此,小X表示很不满意. 在这次来烟台的路上 ...
- Java8新特性之Lambda
为什么要Lambda Java8应该是目前最大的一次更新了,更新后我们迎来了很多新特性,其中便包括Lambda表达式,函数式编程的思想正式进入Java,让我们看一个经典案例. 例1 按照两个人的年龄排 ...
- Linux低权限用户记录ssh密码
0x01 场景 现在有个攻击场景,就是你拿到了linux外网服务器的webshell,要做内网渗透前肯定要收集信息.其中可以做的一个工作是重新编译ssh来记录管理员的密码信息,信息可以用来撞其他机器的 ...
- 机器学习:LibSVM与weka在eclipse中的使用
LibSVM是weka3.5以后的版本新加的功能,使用这个算法必须自己下载jar包,配置进项目: LibSVM在weka可视化界面的使用,很多人写过,但在clipse下的调用资料却不多,试了很多都不能 ...
- PHP 调试时中断了事务
1.错误:Uncaught PDOException: SQLSTATE[HY000]: General error: 1205 Lock wait timeout exceeded; try res ...
- 并发编程之Fork/Join
并发与并行 并发:多个进程交替执行. 并行:多个进程同时进行,不存在线程的上下文切换. 并发与并行的目的都是使CPU的利用率达到最大.Fork/Join就是为了尽可能提高硬件的使用率而应运而生的. 计 ...
- CVE-2016-5159 利用脏牛漏洞Linux提权复现
当前路径: /var/www 磁盘列表: / 系统信息: Linux zico 3.2.0-23-generic #36-Ubuntu SMP Tue Apr 10 20:39:51 UTC 2012 ...
- unittest断言
assertEquals(expected,actual,msg=msg) # 判断 expected,actual是否一致,msg类似备注,可以为空
- ESP8266开发之旅 网络篇⑬ SPIFFS——ESP8266 SPIFFS文件系统
授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...
- 分布式监控CAT服务端的本地部署
一.CAT简介 CAT(Central Application Tracking),是美团点评基于 Java 开发的一套开源的分布式实时监控系统.美团点评基础架构部希望在基础存储.高性能通信.大规模在 ...