多级树的深度优先遍历与广度优先遍历(Java实现)

深度优先遍历与广度优先遍历其实是属于图算法的一种,多级树可以看做是一种特殊的图,所以多级数的深/广遍历直接套用图结构的遍历方法即可。

工程中后端通常会用多级树来存储页面表单的各级联动类目,本文提供了深度遍历与广度遍历的示例,在使用时只要根据你的业务需求稍加改动即可。

我们知道,遍历有递归,非递归两种方式。在工程项目上,一般是禁用递归方式的,因为递归非常容易使得系统爆栈。同时,JVM也限制了最大递归数量,在你的树结构非常深的时候很容易出现StackOverflowError异常,所以最好采用非递归的方式。

节点模型

public class Node {
//值
public int value;
//所有的子节点
public ArrayList<Node> nexts; public Node(int value) {
this.value = value;
}
}

深度优先遍历

深度优先搜索英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。多级树可以看做一个特殊的图结构,总的来说遍历的方法还是不变的,都是利用栈和Set来进行操作。

主要步骤:

  1. 准备一个栈结构和一个Set结构的集合,栈用来记录还有孩子没有被遍历到的节点,Set用来记录遍历的历史记录
  2. 将首节点加入到栈和set中
  3. 弹栈拿到首节点
  4. 从首节点开始深度遍历,下面示例代码配合注解近进行理解。
public static void dfs(Node node) {
if (node == null) {
return;
}
Stack<Node> stack = new Stack<>();
HashSet<Node> set = new HashSet<>();
stack.add(node);
set.add(node);
System.out.println(node.value); while (!stack.isEmpty()) {
//弹栈获得一个节点
Node cur = stack.pop();
//查看这个节点的所有孩子
for (Node next : cur.nexts) {
//如果有孩子是之前没有遍历到的,说明这个节点没有深度遍历完
if (!set.contains(next)) {
//此节点与其孩子加入栈与Set中
stack.push(cur);
stack.push(next);
set.add(next);
System.out.println(next.value);
break;
}
}
}
}

广度优先遍历

宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。对于多级数来说,就是先遍历该节点的所有孩子,然后在遍历孩子节点的所有孩子,先遍历一层再遍历下一次层。

主要思路就是利用队列来将下一层的所有节点记录下来,然后顺序遍历就可以了。

public static void bfs(Node node) {
if (node == null) {
return;
}
Queue<Node> queue = new LinkedList<>();
//用来注册已加入队列的节点——>防止重复添加节点
HashSet<Node> set = new HashSet<>();
queue.add(node);
set.add(node);
while (!queue.isEmpty()) {
Node cur = queue.poll();
System.out.println(cur.value);
//将节点的所有下游节点加入到队列
for (Node next : cur.nexts) {
if (!set.contains(next)) {
set.add(next);
queue.add(next);
}
}
}
}

多级树的深度遍历与广度遍历(Java实现)的更多相关文章

  1. 重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

    参考网址:https://www.cnblogs.com/aoximin/p/13162635.html 前言 简介图: 在数据的逻辑结构D=(KR)中,如果K中结点对于关系R的前趋和后继的个数不加限 ...

  2. java遍历树(深度遍历和广度遍历

    java遍历树如现有以下一颗树:A     B          B1               B11          B2               B22     C          C ...

  3. 图的存储及遍历 深度遍历和广度遍历 C++代码实现

    /*图的存储及遍历*/ #include<iostream> using namespace std; //----------------------------------- //邻接 ...

  4. 数据结构学习-BST二叉查找树 : 插入、删除、中序遍历、前序遍历、后序遍历、广度遍历、绘图

    二叉查找树(Binary Search Tree) 是一种树形的存储数据的结构 如图所示,它具有的特点是: 1.具有一个根节点 2.每个节点可能有0.1.2个分支 3.对于某个节点,他的左分支小于自身 ...

  5. c/c++连通图的遍历(深度遍历/广度遍历)

    连通图的遍历(深度遍历/广度遍历) 概念:图中的所有节点都要遍历到,并且只能遍历一次. 深度遍历 广度遍历 深度遍历 概念:从一个给定的顶点开始,找到一条边,沿着这条边一直遍历. 广度遍历 概念:从一 ...

  6. Java多线程遍历文件夹,广度遍历加多线程加深度遍历结合

    复习IO操作,突然想写一个小工具,统计一下电脑里面的Java代码量还有注释率,最开始随手写了一个递归算法,遍历文件夹,比较简单,而且代码层次清晰,相对易于理解,代码如下:(完整代码贴在最后面,前面是功 ...

  7. Dom的深度优先遍历和广度优先遍历

    //深度优先遍历的递归写法 function DFTraversal(node) { var nodes = []; if (node != null) { nodes.push(node); var ...

  8. 数据结构5_java---二叉树,树的建立,树的先序、中序、后序遍历(递归和非递归算法),层次遍历(广度优先遍历),深度优先遍历,树的深度(递归算法)

    1.二叉树的建立 首先,定义数组存储树的data,然后使用list集合将所有的二叉树结点都包含进去,最后给每个父亲结点赋予左右孩子. 需要注意的是:最后一个父亲结点需要单独处理 public stat ...

  9. 数据结构-树以及深度、广度优先遍历(递归和非递归,python实现)

    前面我们介绍了队列.堆栈.链表,你亲自动手实践了吗?今天我们来到了树的部分,树在数据结构中是非常重要的一部分,树的应用有很多很多,树的种类也有很多很多,今天我们就先来创建一个普通的树.其他各种各样的树 ...

随机推荐

  1. Netty学习(二)-Helloworld Netty

    这一节我们来讲解Netty,使用Netty之前我们先了解一下Netty能做什么,无为而学,岂不是白费力气! 1.使用Netty能够做什么 开发异步.非阻塞的TCP网络应用程序: 开发异步.非阻塞的UD ...

  2. c#引用本地dll发布后运行exe错误

    在config 文件夹 configuration 配置节点下面 添加 <runtime> <gcConcurrent enabled="true" /> ...

  3. ElasticSearch 安装与使用

    目录 Elastic Search Docker中安装ElasticSearch Elastic Search API得使用 创建Index: 修改Index Mapping: 修改Index Set ...

  4. 洛谷 P3203 [HNOI2010]弹飞绵羊

    题意简述 有n个点,第i个点有一个ki,表示到达i这个点后可以到i + ki这个点 支持修改ki和询问一点走几次能走出所有点两个操作 题解思路 分块, 对于每个点,维护它走到下一块所经过的点数,它走到 ...

  5. 防止Web攻击,做好HTTP安全标头

    前言   下图是几年前一位女性在访谈会上提问Linus(Linux操作系统之父) 为什么英伟达显卡在Linux系统中兼容性这么差? Linus说他们曾经去和英伟达谈过关于显卡在Linux上兼容的问题, ...

  6. Hbase多版本(version)数据写入和读取

    1. 首先创建一个支持多版本的hbase表 create }   2.put几条测试数据 put ','f1:name','jack1' put ','f1:name','jack2' 3.读取多版本 ...

  7. 持续集成高级篇之Jekins脚本参数化构建

    系列目录 本系列已经很久没有更新了,接前面基础篇,本系统主要介绍jenkins构建里的一些高级特性.包括脚本参数化,Jenkins Pipeline与及在PipeLine模式下如何执行常见的传统构建任 ...

  8. 人脸识别Demo

    ★.本实例使用百度智能云-人工智能-人脸识别API实现. ★.楼下安装了刷脸进门.闲暇时无聊写了个Demo 主界面显示如下图: 本实例,包括了所有人脸识别API的调用. 1. 创建楼号,对应API中创 ...

  9. IOS系统

    苹果产品以前技术是很牛逼.但是,苹果的系统是IOS系统,是一个封闭系统,就是你只看的到程序看不到文件的存储位置,相当于说他们自己的软件或者要花钱的软件才可以在闭环系统里面通过苹果视频该软件导出来,祝2 ...

  10. AVL-平衡二叉树的原理和实现

    一.简介 本文将通过图解和代码详细讲解AVL平衡二叉树的性质及失衡和再平衡的内容.在看本文之前希望大家具备二分搜索树的相关知识.或移步<二分搜索树>了解二分搜索树. 二.平衡二叉树 前面关 ...