题意:给定图,随机一个排列,依次加点,如果加点之后不是独立集就不加。求最后得到一个最大独立集的概率。

解:就是求有多少个排列可以加出最大独立集。

显然有一个3n的状压DP,0表示没加,1表示没加上,2表示加上了。

转移的时候枚举下一个加哪个点即可。这样有30分。

然后还是过不了的。考虑怎么压成二进制。我们可以用1表示这个点不能加(与某个加入的点相邻或者已经加入),0表示这个点可以加。

这样会损失一个信息,你就不知道当前独立集多大。所以再开一维表示独立集大小。

每次转移的时候考虑加哪一个点。顺便把它相邻的点也加上。注意它相邻的点加入的时候有顺序。具体来说,我们之前的状态中如果有x个点,那么就还有n - x个空位。而其中最前面的一个空位肯定是你主动加进去的点。所以现在要在n - x - 1个空位中放进被动加进去的点。这就是一个排列数。

然后就有了一个n2n的DP了。注意预处理出与一个点相邻的点和一个状态中点的个数。

 #include <cstdio>

 typedef long long LL;
const int N = ;
const LL MO = ; struct Edge {
int nex, v;
}edge[N * N * ]; int top; int n, e[N], cnt[ << ], nb[N];
LL f[N][ << ], nn[N], inv[N], invn[N];
bool vis[N]; inline void add(int x, int y) {
top++;
edge[top].v = y;
edge[top].nex = e[x];
e[x] = top;
return;
} inline void out(int x) {
for(int i = ; i < n; i++) {
printf("%d", (x >> i) & );
}
return;
} inline LL C(int n, int m) {
return nn[n] * invn[m] % MO * invn[n - m] % MO;
}
inline LL P(int n, int m) {
if(m > n) {
return ;
}
return nn[n] * invn[n - m] % MO;
} int main() {
int m;
scanf("%d%d", &n, &m);
for(int i = , x, y; i <= m; i++) {
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
}
int lm = ( << n);
for(int s = ; s < lm; s++) {
cnt[s] = + cnt[(s - (s & (-s))) >> ];
}
for(int x = ; x < n; x++) {
nb[x] = << x;
for(int i = e[x + ]; i; i = edge[i].nex) {
int y = edge[i].v - ;
nb[x] |= ( << y);
}
}
nn[] = inv[] = invn[] = ;
nn[] = inv[] = invn[] = ;
for(int i = ; i <= n; i++) {
nn[i] = nn[i - ] * i % MO;
inv[i] = inv[MO % i] * (MO - MO / i) % MO;
invn[i] = invn[i - ] * inv[i] % MO;
} int ans = ;
LL sum = ;
f[][] = vis[] = ;
for(int i = ; i <= n && vis[i]; i++) {
for(int s = ; s < lm; s++) {
// f[i][s]
if(!f[i][s]) {
continue;
}
//printf("f %d ", i); out(s); printf(" = %lld \n", f[i][s]);
if(i > ans) {
ans = i;
sum = f[i][s];
}
else if(i == ans) {
sum = (sum + f[i][s]) % MO;
}
for(int j = ; j < n; j++) {
if((s >> j) & ) {
continue;
}
int t = s | nb[j];
// f[i + 1][t]
(f[i + ][t] += f[i][s] * P(n - cnt[s] - , cnt[t] - cnt[s] - ) % MO) %= MO;
vis[i + ] = ;
//printf("f %d ", i + 1); out(t); printf(" += f %d ", i); out(s); printf(" * %lld \n", P(n - cnt[s] - 1, cnt[t] - cnt[s] - 1));
}
}
} printf("%lld\n", sum * invn[n] % MO);
//printf("%d %lld \n", ans, sum);
return ;
}

AC代码

LOJ#2540 随机算法的更多相关文章

  1. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  2. [PKUWC2018]随机算法

    题意:https://loj.ac/problem/2540 给定一个图(n<=20),定义一个求最大独立集的随机化算法 产生一个排列,依次加入,能加入就加入 求得到最大独立集的概率 loj25 ...

  3. 微信红包中使用的技术:AA收款+随机算法

    除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...

  4. POJ 3318 Matrix Multiplication(随机算法)

    题目链接 随机算法使劲水...srand((unsigned)time(0))比srand(NULL)靠谱很多,可能是更加随机. #include <cstdio> #include &l ...

  5. 抽奖随机算法的技术探讨与C#实现

    一.模拟客户需求 1.1 客户A需求:要求每次都按照下图的概率随机,数量不限,每个用户只能抽一次,抽奖结果的分布与抽奖概率近似. 1.2 客户B需求:固定奖项10个,抽奖次数不限,每个用户只能抽一次, ...

  6. hdu 4712 (随机算法)

    第一次听说随机算法,在给的n组数据间随机取两个组比较,当随机次数达到一定量时,答案就出来了. #include<stdio.h> #include<stdlib.h> #inc ...

  7. 权重随机算法的java实现

    一.概述 平时,经常会遇到权重随机算法,从不同权重的N个元素中随机选择一个,并使得总体选择结果是按照权重分布的.如广告投放.负载均衡等. 如有4个元素A.B.C.D,权重分别为1.2.3.4,随机结果 ...

  8. hdu 4712 Hamming Distance ( 随机算法混过了 )

    Hamming Distance Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  9. HDU4712+随机算法

    随机算法 求n个20位的2进制串的MinDist. Dist:两个串的异或结果中1的个数 /* 随机算法 */ #include<algorithm> #include<iostre ...

随机推荐

  1. c# thread pause example

    some times we need pause thread to do some additional job: c# thread pause example as below: 1. crea ...

  2. 20155238 实验四 Android程序设计

    Android 安装Android Studio 按照教程依次完成安装步骤.安装所存的相应文件夹必须纯英文,不能出现特殊字符. 32位系统和64位系统是同一个安装文件.启动程序中32位与64位都有.根 ...

  3. 20155334 网络对抗PC平台逆向破解(二)

    注入Shellcode并运行攻击 shellcode就是一段机器指令(code) 通常这段机器指令的目的是为获取一个交互式的shell(像linux的shell或类似windows下的cmd.exe) ...

  4. Hibernate一对多关联关系保存时的探究

    在以前使用hibernate时,经常对保存存在关联关系的对象时,不确定是否能保存成功.    因此,特意对一对多关系的2个对象进行实践. 一.pojo类和配置文件的准备         这里有一点提前 ...

  5. Python+Selenium爬取动态加载页面(2)

    注: 上一篇<Python+Selenium爬取动态加载页面(1)>讲了基本地如何获取动态页面的数据,这里再讲一个稍微复杂一点的数据获取全国水雨情网.数据的获取过程跟人手动获取过程类似,所 ...

  6. POJ1035&&POJ3080&&POJ1936

    字符串处理专题,很早就写好了然而忘记写blog了 1035 题意:给你一些单词作为字典.然后让你查找一些单词.对于每个单词,如果在字典中就输出它.否则输出所有它通过删除||增加||替换一个字符能得到的 ...

  7. 阿里云Redis外网转发访问

    1.前提条件 如果您需要从本地 PC 端访问 Redis 实例进行数据操作,可以通过在 ECS 上配置端口映射或者端口转发实现.但必须符合以下前提条件: 若 Redis 实例属于专有网络(VPC),E ...

  8. Elasticsearch Query DSL 整理总结(一)—— Query DSL 概要,MatchAllQuery,全文查询简述

    目录 引言 概要 Query and filter context Match All Query 全文查询 Full text queries 小结 参考文档 引言 虽然之前做过 elasticse ...

  9. OLEDB数据源和目标组件

    在SSIS工程的开发过程中,OLEDB 数据源和目标组件是最常用的数据流组件.从功能上讲,OLEDB 数据源组件用于从OLEDB 提供者(Provider)中获取数据,传递给下游组件,OLEDB提供者 ...

  10. cadence allegro 封装原点修改

    打开 dra文件后 在菜单栏 setup - change drawing origin 在命令栏输入 新的参考点位置 如想更改新坐标位置为 1,2 .输入  x 1 2