luogu 3188 [HNOI2007]梦幻岛宝珠
LINK:梦幻岛宝珠
时隔多日 我再次挑战这道题。还是以失败告终。
我觉得这一道背包真的有点难度 这是一个数量较少 但是价值和体积较大的背包。
通常的01背包 要不就是体积小 要么是价值小 但这道题给了价值和体积都大 说明必然有其他重要的条件。
那就是体积为\(a*2^b\) \(a\leq 10,b\leq 30\)
只有这一个有利用价值的东西 我们无奈的对这个东西进行dp 对b进行分组 然后各个组进行dp.
关键我们如何把这些组给合起来。我想了很久 也翻了好几篇题解。
我终于明白为什么了。这个题 对我来说感觉很困难。
我们要得到容量为m的答案 还是考虑按位枚举背包的大小。
dp[i][j] 表示考虑到了第i为 此时我们背包的容量为\(j\cdot 2^i+m&((1<<i)-1)\)容量为这么多时的价值。
之所以是这个因为我们是从小到大来记录到底拿了多少 考虑到了第i位 对于第i位 我们可能当前没有这么多钱 但是之后高位可能有所以当前就需要存一下这个状态而后面的是我们应该有了这么多的钱用来买了。
所以这样dp一下 可以发现对于j的枚举 最多1000 也可以记一个总量来辅助转移。
这样转移可以保证的是 这是类似于背包的转移 且也不需要开过大的空间。
可以证明这是正确的。
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ld long double
#define pb push_back
#define get(x) x=read()
#define gtc(x) scanf("%s",a+1)
#define gt(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define pii pair<int,int>
#define F first
#define S second
#define mk make_pair
#define mod 1000000009
#define RE register
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=1010,maxn=33;
int n,m,mx;
vector<int>w[maxn],v[maxn];
int f[maxn][MAXN],c[maxn];
int main()
{
freopen("1.in","r",stdin);
while(1)
{
get(n);get(m);mx=0;
memset(f,0,sizeof(f));
memset(c,0,sizeof(c));
memset(w,0,sizeof(w));
memset(v,0,sizeof(v));
if(n==-1&&m==-1)break;
rep(1,n,i)
{
int x,y;
get(x);get(y);
int cnt=0;
while(1)
{
if(x&1)break;
x=x>>1;++cnt;
}
w[cnt].pb(x);v[cnt].pb(y);
mx=max(mx,cnt);c[cnt]+=x;
}
rep(0,mx,i)
{
rep(0,(int)(w[i].size())-1,j)
{
for(int k=c[i];k>=w[i][j];--k)
f[i][k]=max(f[i][k],f[i][k-w[i][j]]+v[i][j]);
}
}
int len=0;
while(m>>len)++len;--len;
//cout<<len<<endl;
rep(1,len,i)
{
c[i]+=(c[i-1]+1)/2;
//cout<<c[i]<<endl;
for(int j=c[i];j>=0;--j)
for(int k=0;k<=j;++k)
f[i][j]=max(f[i][j],f[i][j-k]+f[i-1][min(c[i-1],(k<<1)+((m>>(i-1))&1))]);
}
put(f[len][1]);
}
return 0;
}
虽然写完了 但是这道题 还需要再细细揣摩其中dp合并的思想。
luogu 3188 [HNOI2007]梦幻岛宝珠的更多相关文章
- [BZOJ 1190][HNOI2007]梦幻岛宝珠
1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1057 Solved: 611[Submit][Stat ...
- 【BZOJ1190】[HNOI2007]梦幻岛宝珠 分层背包DP
[BZOJ1190][HNOI2007]梦幻岛宝珠 Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. ...
- BZOJ 1190 [HNOI2007]梦幻岛宝珠(背包)
1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 798[Submit][Stat ...
- 【题解】 bzoj1190: [HNOI2007]梦幻岛宝珠 (动态规划)
bzoj1190,懒得复制,戳我戳我 Solution: 这道题其实是一个背包(分组背包),但是由于数字比较大,就要重新构造dp式子.啃了三天才懂. \(dp[i][j]\)表示背包容积为\(j*2^ ...
- 1190: [HNOI2007]梦幻岛宝珠 - BZOJ
Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. 数据范围:N<=100;W<=2^30 ...
- [HNOI2007]梦幻岛宝珠(背包)
给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值.数据范围:N<=100;W<=2^30,并且保证每颗宝石的重量符 ...
- [HNOI2007]梦幻岛宝珠
题解: 一道比较好的题目 首先比较显然的就是我们要按照a*2^b的b的顺序来枚举 那么状态f[i][j]表示当前在b,用了a*2^b 刚开始没想到怎么不同层之间搞 看了题解发现非常简单 由于每一层到最 ...
- BZOJ.1190.[HNOI2007]梦幻岛宝珠(分层背包DP)
题目链接 把重量表示为\(a\times2^b\)的形式,然后按\(b\)排序. 从高到低枚举每一位,\(f[i]\)表示当前位容量为\(i\)时的最大价值(容量即\(a\times2^{bit}\) ...
- [HNOI2007]梦幻岛宝珠 「套路:分层 $DP$」
显然直接 \(01\) 背包会超时并且超空间 套路:分层 \(DP\) 「考虑将每个子结构看作一层(也就是包含了不止 \(1\) 个物品的信息),并且大层不会对小层造成影响,可以考虑先进行每一层的自我 ...
随机推荐
- 前段人员必藏的7 个 CSS 好用的属性绝对干货
学习CSS是构建好看网页的一种方式. 但是,在学习过程中,我们倾向于(大部分时间)限制自己,一遍又一遍地使用相同的属性. 毕竟,我们是一种习惯性的动物,我们会使用自己习惯且熟悉的东西. 因此,在这篇文 ...
- USACO07NOV Cow Relays G 题解
题目 For their physical fitness program, \(N (2 ≤ N ≤ 1,000,000)\) cows have decided to run a relay ra ...
- 洛谷 P1131 [ZJOI2007]时态同步 树形DP
题目描述 分析 我们从根节点开始搜索,搜索到叶子节点,回溯的时候进行维护 先维护节点的所有子节点到该节点最大边权(边权为叶子节点到同时到达它所需要时间) 然后维护答案,答案为最大边权减去所有到子节点的 ...
- PHP一维数组快速去重、去零
1.一维数组去重: /** * 一维数组去重,返回格式为索引数组 * @param array $data 待去重的数组 * @return array */ public static functi ...
- day76 作业
目录 需求: 作业1: 作业2: 需求: 1. 在作业1.html代码的基础上,引入vue.js文件,并实例化vm对象,绑定#goods元素 2. 在作业1.html代码的基础上,默认中间弹出窗口隐藏 ...
- day46 mysql进阶
目录 一.约束条件 1 default默认值 2 unique唯一 2.1 单列唯一 2.2 联合唯一 3 primary key主键 3.1 主键的基本使用 3.2 主键的特性 4 auto_inc ...
- ES2020的这些新功能令人期待
转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 原文出处:https://blog.bitsrc.io/es2020-has-been-finalized- ...
- 关于flask(前后端分离)的后端开发的小白笔记整理(含postman,jwt,json,SQLAlchemy等)
首先是提醒自己的一些唠嗑: 学会劳逸结合,文档看累了可以看视频,动手操作很关键,遇到问题先动脑子冷静地想,不要跟着步骤都不带脑子,想不出来了再查一查!有时候打出来的代码很虚,但是实践不花钱,实践出真知 ...
- Java 线程池中的线程复用是如何实现的?
前几天,技术群里有个群友问了一个关于线程池的问题,内容如图所示: 关于线程池相关知识可以先看下这篇:为什么阿里巴巴Java开发手册中强制要求线程池不允许使用Executors创建? 那么就来和大家探讨 ...
- scrapy 基础组件专题(八):scrapy-redis 框架分析
scrapy-redis简介 scrapy-redis是scrapy框架基于redis数据库的组件,用于scrapy项目的分布式开发和部署. 有如下特征: 分布式爬取 您可以启动多个spider工 ...