luogu 3188 [HNOI2007]梦幻岛宝珠
LINK:梦幻岛宝珠
时隔多日 我再次挑战这道题。还是以失败告终。
我觉得这一道背包真的有点难度 这是一个数量较少 但是价值和体积较大的背包。
通常的01背包 要不就是体积小 要么是价值小 但这道题给了价值和体积都大 说明必然有其他重要的条件。
那就是体积为\(a*2^b\) \(a\leq 10,b\leq 30\)
只有这一个有利用价值的东西 我们无奈的对这个东西进行dp 对b进行分组 然后各个组进行dp.
关键我们如何把这些组给合起来。我想了很久 也翻了好几篇题解。
我终于明白为什么了。这个题 对我来说感觉很困难。
我们要得到容量为m的答案 还是考虑按位枚举背包的大小。
dp[i][j] 表示考虑到了第i为 此时我们背包的容量为\(j\cdot 2^i+m&((1<<i)-1)\)容量为这么多时的价值。
之所以是这个因为我们是从小到大来记录到底拿了多少 考虑到了第i位 对于第i位 我们可能当前没有这么多钱 但是之后高位可能有所以当前就需要存一下这个状态而后面的是我们应该有了这么多的钱用来买了。
所以这样dp一下 可以发现对于j的枚举 最多1000 也可以记一个总量来辅助转移。
这样转移可以保证的是 这是类似于背包的转移 且也不需要开过大的空间。
可以证明这是正确的。
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ld long double
#define pb push_back
#define get(x) x=read()
#define gtc(x) scanf("%s",a+1)
#define gt(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define pii pair<int,int>
#define F first
#define S second
#define mk make_pair
#define mod 1000000009
#define RE register
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=1010,maxn=33;
int n,m,mx;
vector<int>w[maxn],v[maxn];
int f[maxn][MAXN],c[maxn];
int main()
{
freopen("1.in","r",stdin);
while(1)
{
get(n);get(m);mx=0;
memset(f,0,sizeof(f));
memset(c,0,sizeof(c));
memset(w,0,sizeof(w));
memset(v,0,sizeof(v));
if(n==-1&&m==-1)break;
rep(1,n,i)
{
int x,y;
get(x);get(y);
int cnt=0;
while(1)
{
if(x&1)break;
x=x>>1;++cnt;
}
w[cnt].pb(x);v[cnt].pb(y);
mx=max(mx,cnt);c[cnt]+=x;
}
rep(0,mx,i)
{
rep(0,(int)(w[i].size())-1,j)
{
for(int k=c[i];k>=w[i][j];--k)
f[i][k]=max(f[i][k],f[i][k-w[i][j]]+v[i][j]);
}
}
int len=0;
while(m>>len)++len;--len;
//cout<<len<<endl;
rep(1,len,i)
{
c[i]+=(c[i-1]+1)/2;
//cout<<c[i]<<endl;
for(int j=c[i];j>=0;--j)
for(int k=0;k<=j;++k)
f[i][j]=max(f[i][j],f[i][j-k]+f[i-1][min(c[i-1],(k<<1)+((m>>(i-1))&1))]);
}
put(f[len][1]);
}
return 0;
}
虽然写完了 但是这道题 还需要再细细揣摩其中dp合并的思想。
luogu 3188 [HNOI2007]梦幻岛宝珠的更多相关文章
- [BZOJ 1190][HNOI2007]梦幻岛宝珠
1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1057 Solved: 611[Submit][Stat ...
- 【BZOJ1190】[HNOI2007]梦幻岛宝珠 分层背包DP
[BZOJ1190][HNOI2007]梦幻岛宝珠 Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. ...
- BZOJ 1190 [HNOI2007]梦幻岛宝珠(背包)
1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 798[Submit][Stat ...
- 【题解】 bzoj1190: [HNOI2007]梦幻岛宝珠 (动态规划)
bzoj1190,懒得复制,戳我戳我 Solution: 这道题其实是一个背包(分组背包),但是由于数字比较大,就要重新构造dp式子.啃了三天才懂. \(dp[i][j]\)表示背包容积为\(j*2^ ...
- 1190: [HNOI2007]梦幻岛宝珠 - BZOJ
Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. 数据范围:N<=100;W<=2^30 ...
- [HNOI2007]梦幻岛宝珠(背包)
给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值.数据范围:N<=100;W<=2^30,并且保证每颗宝石的重量符 ...
- [HNOI2007]梦幻岛宝珠
题解: 一道比较好的题目 首先比较显然的就是我们要按照a*2^b的b的顺序来枚举 那么状态f[i][j]表示当前在b,用了a*2^b 刚开始没想到怎么不同层之间搞 看了题解发现非常简单 由于每一层到最 ...
- BZOJ.1190.[HNOI2007]梦幻岛宝珠(分层背包DP)
题目链接 把重量表示为\(a\times2^b\)的形式,然后按\(b\)排序. 从高到低枚举每一位,\(f[i]\)表示当前位容量为\(i\)时的最大价值(容量即\(a\times2^{bit}\) ...
- [HNOI2007]梦幻岛宝珠 「套路:分层 $DP$」
显然直接 \(01\) 背包会超时并且超空间 套路:分层 \(DP\) 「考虑将每个子结构看作一层(也就是包含了不止 \(1\) 个物品的信息),并且大层不会对小层造成影响,可以考虑先进行每一层的自我 ...
随机推荐
- python 爬虫,网页转PDF:OSError: No wkhtmltopdf executable found
解决办法: 代码中设置参数: path_wk = r‘D:\Program Files\wkhtmltopdf\bin\wkhtmltopdf.exe‘ #wkhtmltopdf安装位置 config ...
- python 生成器(一):生成器基础(一)生成器函数
前言 实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替SentenceIterator 类.示例 14-5 sentence_gen.py:使用生成器函数实现 Sentence 类 ...
- AcWing 717. 简单斐波那契
AcWing 717. 简单斐波那契 原题链接 以下数列0 1 1 2 3 5 8 13 21 -被称为斐波纳契数列. 这个数列从第3项开始,每一项都等于前两项之和. 输入一个整数N,请你输出这个序列 ...
- python小游戏-水文
脚本不会,全都白费.所以就去学习了简单的python,结果不慎学了python中的pygame,浪费了不少时间,没啥用如果不做游戏个人觉得最好别学,学爬虫她不香吗?不过也有一点收获,打飞机小游戏,源码 ...
- C# 字段初始值无法引用非静态字段、方法或属性( 类内部变量初始化)
问题:字段初始值设定项无法引用非静态字段.方法或属性的问题 在类中 变量赋值其他变量报错? public class TestClass{ public TestClass() { } pu ...
- easyui datagrid 中添加combobox
项目需要,如下图所示 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> &l ...
- Docker 基础知识 - 使用卷(volume)管理应用程序数据
卷(volumes)是 Docker 容器生产和使用持久化数据的首选机制.绑定挂载(bind mounts)依赖于主机的目录结构,卷(volumes)完全由 Docker 管理.卷与绑定挂载相比有几个 ...
- tomcat内容总结
tomcat的安装以及配置环境变量 1.tomcat的官网下载地址:http://tomcat.apache.org/ tomcat有很多版本,有解压版 和 安装版,还分windows (还分为32位 ...
- ionic环境安装步骤
注:准确性有待考证,仅供参考. 1,安装jdk 配置环境变量:java_home和path2,安装node 检查版本 node -v3,安装npm:npm i cnpm -g 检查版本:cnpm -v ...
- Just test it!!软件测试测起来!!
(图片: josh@unsplash,字数:700,时间:1分钟) (一) 一切的软件质量保障活动,归根结底,就两种类型. 一种是基于代码执行的,一种是不基于代码执行的. 测试之于肉眼自查.静态检查. ...