LINK:Painting Graphs with AtCoDeer

看英文题面果然有点吃不消 一些细节会被忽略掉。

问每条边都要被染色 且一个环上边的颜色可以旋转.

用c种颜色有多少本质不同的方法。

注意这里的环指简单环 即不能经过一个节点两次。

考虑环套环的情况 手玩可以发现 可以将这种情况出现的所有边按顺序放置。

那么只和颜色出现的次数有关 隔板法做即可。

一个环 容易发现可以使用\(burnside\)引理。

割边 也很容易。

难点是求简单环。

不能求割边 因为边双不一定是简单环。

但是点双可以发现是简单环 证明可以感性理解 我也不知道怎么证明。

再跑个割边求就复杂了。这道题特殊性是 无重边无自环。

割边所属的那两个点显然是一个点双 所以这道题中大小为2的点双中间夹的就是割边。

复杂度\(n^2logn\)

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define inf 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-10
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f; }
const int MAXN=55,maxn=110<<2;
int n,m,c,len=1,maxx,top,cc,cnt,T,ans=1;
int fac[maxn],inv[maxn],vis[maxn],mark[maxn],dfn[maxn],low[maxn],s[maxn],g[maxn],q[maxn];
int lin[MAXN],ver[maxn],nex[maxn];
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
inline int gcd(int a,int b){return b?gcd(b,a%b):a;}
inline int solve(int n)
{
int sum=0;
rep(1,n,i)sum=(sum+ksm(c,gcd(n,i)))%mod;
sum=(ll)sum*ksm(n,mod-2)%mod;
return sum;
}
inline int C(int a,int b){return a<b?0:fac[a]*(ll)inv[b]%mod*inv[a-b]%mod;}
inline void solve_1(int n)
{
if(n==2)return ++cnt,void();
rep(1,n,i)mark[q[i]]=1;
int sum=0;
rep(1,n,j)
{
for(int k=lin[q[j]];k;k=nex[k])
{
int tn=ver[k];
if(mark[tn])++sum;
}
}
sum=sum>>1;
if(sum==n)ans=(ll)ans*solve(n)%mod;
else ans=(ll)ans*C(c+sum-1,c-1)%mod;
rep(1,n,j)mark[q[j]]=0;
}
inline void dfs(int x)
{
dfn[x]=low[x]=++T;s[++top]=x;
go(x)
{
if(!dfn[tn])
{
dfs(tn);
low[x]=min(low[x],low[tn]);
int tt=0;
if(low[tn]>=dfn[x])
{
int y=0;tt=0;
while(y!=tn)
{
y=s[top--];
q[++tt]=y;
}
q[++tt]=x;
solve_1(tt);
}
}
else low[x]=min(low[x],dfn[tn]);
}
}
int main()
{
//freopen("1.in","r",stdin);
maxx=300;get(n);get(m);get(c);
rep(1,m,i)
{
int get(x),get(y);
add(x,y);add(y,x);
}
fac[0]=1;
rep(1,maxx,i)fac[i]=(ll)fac[i-1]*i%mod;
inv[maxx]=ksm(fac[maxx],mod-2);
fep(maxx-1,0,i)inv[i]=(ll)inv[i+1]*(i+1)%mod;
rep(1,n,i)if(!dfn[i])dfs(i);
ans=(ll)ans*ksm(c,cnt)%mod;
put(ans);return 0;
}

ARC 062 F - Painting Graphs with AtCoDeer 割点 割边 不动点 burnside引理的更多相关文章

  1. ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)

    似乎好久都没写博客了....赶快来补一篇 题意 给你一个 \(n\) 个点 , 没有重边和自环的图 . 有 \(m\) 条边 , 每条边可以染 \(1 \to k\) 中的一种颜色 . 对于任意一个简 ...

  2. [Arc062] Painting Graphs with AtCoDeer

    [Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...

  3. ARC062F AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer Burnside 引理

    题目传送门 https://atcoder.jp/contests/arc062/tasks/arc062_d 题解 首先对整张图做 Tarjan 点双. 对于一个点双,如果是由一条边构成的,那么很显 ...

  4. AtcoderARC062F Painting Graphs with AtCoDeer 【双连通分量】【polya原理】

    题目分析: 如果一个双连通分量是简单环,那么用polya原理计数循环移位即可. 如果一个双连通分量不是简单环,那么它必然可以两两互换,不信你可以证明一下相邻的可以互换. 如果一条边是桥,那么直接乘以k ...

  5. 【AtCoder】ARC062F - AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer

    题解 考虑一个点双(因为是简单环),如果没有环(两点一线),那么乘上K 如果有一个环,那么用polya定理,每个置换圈有gcd(i,n)个循环节 如果有两个及以上的环,任何一种置换都合法,那么只和每个 ...

  6. [ARC062F]Painting Graphs with AtCoDeer

    题意:一个无向图,用$k$种不同的颜色给每条边染色,问能染出多少种不同的图,如果两张图能通过循环移位环边使得颜色相同,那么这两张图被认为是相同的 数学太差伤不起啊...补了一下Burnside定理的证 ...

  7. 2018.09.20 atcoder Painting Graphs with AtCoDeer(tarjan+polya)

    传送门 一道思维题. 如果没有环那么对答案有k的贡献. 如果恰为一个环,可以用polya求贡献. 如果是一个有多个环重叠的双联通的话,直接转化为组合数问题(可以证明只要每种颜色被选取的次数相同一定可以 ...

  8. 【ARC062F】 Painting Graphs with AtCoDeer 点双连通分量+polya定理

    Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色. 你可以对一张染色了的图进行若干次操作,每次操作形如,在图中选择一个简单环(即不经过相同点的环),并且将其颜色逆时针 ...

  9. [atARC062F]Painting Graphs with AtCoDeer

    求出点双后缩点,对于点双之间,显然不存在简单环,即每一个简单环一定在一个点双内部,换言之即每一个点双可以独立的考虑,然后将结果相乘 (对于点双之间的边任意染色,即若有$s$条边,还会有$k^{s}$的 ...

随机推荐

  1. web前端图片加载优化,从图片模糊到清晰的实现过程

    在网页图片显示的时候,会发现许多网站采用了先模糊,然后在慢慢清晰的过程,这样的加载用户体验是比较好的,那么如何实现呐? 默认加载2张图片,一张缩略图,一张原图,当打开网页的时候默认只显示缩略图,然后我 ...

  2. 大厂前端带来css3动画transition的使用和介绍全新认识动画

    CSS3中可以使用transition来做最简单动画效果,transition表示到一个元素的属性值发生变化时,我们可以看到页面元素从旧的属性慢慢变化为新的属性值的过程,这种效果不是立即变化的,而是体 ...

  3. 「STL中的常用函数 容器」

    占个坑,下午在更 二分操作:lower_bound和upper_bound 存图/数列操作:vector容器 全排列:next_permutation和prev_permutation 字符串转数列: ...

  4. 浅析Python垃圾回收机制!

    Python垃圾回收机制 目录 Python垃圾回收机制 1. 内存泄露 2. Python什么时候启动垃圾回收机制? 2.1 计数引用 2.2 循环引用 问题:引用计数是0是启动垃圾回收的充要条件吗 ...

  5. for of

    1. 遍历范围 for...of 循环可以使用的范围包括: 数组 Set Map 类数组对象,如 arguments 对象.DOM NodeList 对象 Generator 对象 字符串 2. 优势 ...

  6. HTB::Postman

    实验环境 渗透过程 0x01 信息搜集 masscan扫描 扫描结果目标服务开放了22(ssh),80(http),6379(redis),10000(webmin)端口 nmap扫描 nmap -s ...

  7. SQL字符串拼接FOR XML PATH

    在工作中难免会遇到数据库中数据要进行拼接的问题,字符串拼接可以是用SQL的拼接也可以使用C#的拼接,本次说的是使用SQL进行拼接. 首先插入测试语句: --测试语句,准备创建表的语句:如下 CREAT ...

  8. python之爬虫(十) Selenium库的使用

    一.什么是Selenium selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行 ...

  9. SpringMVC中@RequestBody接收前端传来的多个参数

    在使用ajax发送请求时,如果发送的JSON数据是一个类中的不同属性,在Controller方法中使用@RequestBody会直接封装进该类中 例如: 前端部分代码 JavaScript <s ...

  10. 汇总我在IDEA中使用Maven导包遇到的问题

    看吐了吗?我是真吐了 真正遇到这些问题的朋友看到这,是不是有种找到知音的感觉,别怕,你不是在一个人战斗,苦逼的日子里,还有个我陪你一起苦逼,吐了吐了,这问题不知道耗费了我多久的时间,百度好多也解决不了 ...