ARC 062 F - Painting Graphs with AtCoDeer 割点 割边 不动点 burnside引理
LINK:Painting Graphs with AtCoDeer
看英文题面果然有点吃不消 一些细节会被忽略掉。
问每条边都要被染色 且一个环上边的颜色可以旋转.
用c种颜色有多少本质不同的方法。
注意这里的环指简单环 即不能经过一个节点两次。
考虑环套环的情况 手玩可以发现 可以将这种情况出现的所有边按顺序放置。
那么只和颜色出现的次数有关 隔板法做即可。
一个环 容易发现可以使用\(burnside\)引理。
割边 也很容易。
难点是求简单环。
不能求割边 因为边双不一定是简单环。
但是点双可以发现是简单环 证明可以感性理解 我也不知道怎么证明。
再跑个割边求就复杂了。这道题特殊性是 无重边无自环。
割边所属的那两个点显然是一个点双 所以这道题中大小为2的点双中间夹的就是割边。
复杂度\(n^2logn\)
code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define inf 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-10
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
const int MAXN=55,maxn=110<<2;
int n,m,c,len=1,maxx,top,cc,cnt,T,ans=1;
int fac[maxn],inv[maxn],vis[maxn],mark[maxn],dfn[maxn],low[maxn],s[maxn],g[maxn],q[maxn];
int lin[MAXN],ver[maxn],nex[maxn];
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
inline int gcd(int a,int b){return b?gcd(b,a%b):a;}
inline int solve(int n)
{
int sum=0;
rep(1,n,i)sum=(sum+ksm(c,gcd(n,i)))%mod;
sum=(ll)sum*ksm(n,mod-2)%mod;
return sum;
}
inline int C(int a,int b){return a<b?0:fac[a]*(ll)inv[b]%mod*inv[a-b]%mod;}
inline void solve_1(int n)
{
if(n==2)return ++cnt,void();
rep(1,n,i)mark[q[i]]=1;
int sum=0;
rep(1,n,j)
{
for(int k=lin[q[j]];k;k=nex[k])
{
int tn=ver[k];
if(mark[tn])++sum;
}
}
sum=sum>>1;
if(sum==n)ans=(ll)ans*solve(n)%mod;
else ans=(ll)ans*C(c+sum-1,c-1)%mod;
rep(1,n,j)mark[q[j]]=0;
}
inline void dfs(int x)
{
dfn[x]=low[x]=++T;s[++top]=x;
go(x)
{
if(!dfn[tn])
{
dfs(tn);
low[x]=min(low[x],low[tn]);
int tt=0;
if(low[tn]>=dfn[x])
{
int y=0;tt=0;
while(y!=tn)
{
y=s[top--];
q[++tt]=y;
}
q[++tt]=x;
solve_1(tt);
}
}
else low[x]=min(low[x],dfn[tn]);
}
}
int main()
{
//freopen("1.in","r",stdin);
maxx=300;get(n);get(m);get(c);
rep(1,m,i)
{
int get(x),get(y);
add(x,y);add(y,x);
}
fac[0]=1;
rep(1,maxx,i)fac[i]=(ll)fac[i-1]*i%mod;
inv[maxx]=ksm(fac[maxx],mod-2);
fep(maxx-1,0,i)inv[i]=(ll)inv[i+1]*(i+1)%mod;
rep(1,n,i)if(!dfn[i])dfs(i);
ans=(ll)ans*ksm(c,cnt)%mod;
put(ans);return 0;
}
ARC 062 F - Painting Graphs with AtCoDeer 割点 割边 不动点 burnside引理的更多相关文章
- ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)
似乎好久都没写博客了....赶快来补一篇 题意 给你一个 \(n\) 个点 , 没有重边和自环的图 . 有 \(m\) 条边 , 每条边可以染 \(1 \to k\) 中的一种颜色 . 对于任意一个简 ...
- [Arc062] Painting Graphs with AtCoDeer
[Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...
- ARC062F AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer Burnside 引理
题目传送门 https://atcoder.jp/contests/arc062/tasks/arc062_d 题解 首先对整张图做 Tarjan 点双. 对于一个点双,如果是由一条边构成的,那么很显 ...
- AtcoderARC062F Painting Graphs with AtCoDeer 【双连通分量】【polya原理】
题目分析: 如果一个双连通分量是简单环,那么用polya原理计数循环移位即可. 如果一个双连通分量不是简单环,那么它必然可以两两互换,不信你可以证明一下相邻的可以互换. 如果一条边是桥,那么直接乘以k ...
- 【AtCoder】ARC062F - AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer
题解 考虑一个点双(因为是简单环),如果没有环(两点一线),那么乘上K 如果有一个环,那么用polya定理,每个置换圈有gcd(i,n)个循环节 如果有两个及以上的环,任何一种置换都合法,那么只和每个 ...
- [ARC062F]Painting Graphs with AtCoDeer
题意:一个无向图,用$k$种不同的颜色给每条边染色,问能染出多少种不同的图,如果两张图能通过循环移位环边使得颜色相同,那么这两张图被认为是相同的 数学太差伤不起啊...补了一下Burnside定理的证 ...
- 2018.09.20 atcoder Painting Graphs with AtCoDeer(tarjan+polya)
传送门 一道思维题. 如果没有环那么对答案有k的贡献. 如果恰为一个环,可以用polya求贡献. 如果是一个有多个环重叠的双联通的话,直接转化为组合数问题(可以证明只要每种颜色被选取的次数相同一定可以 ...
- 【ARC062F】 Painting Graphs with AtCoDeer 点双连通分量+polya定理
Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色. 你可以对一张染色了的图进行若干次操作,每次操作形如,在图中选择一个简单环(即不经过相同点的环),并且将其颜色逆时针 ...
- [atARC062F]Painting Graphs with AtCoDeer
求出点双后缩点,对于点双之间,显然不存在简单环,即每一个简单环一定在一个点双内部,换言之即每一个点双可以独立的考虑,然后将结果相乘 (对于点双之间的边任意染色,即若有$s$条边,还会有$k^{s}$的 ...
随机推荐
- 「单调队列优化DP」P2034 选择数字
「单调队列优化DP」P2034 选择数字 题面描述: 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入格 ...
- PHP一维数组快速去重、去零
1.一维数组去重: /** * 一维数组去重,返回格式为索引数组 * @param array $data 待去重的数组 * @return array */ public static functi ...
- jsp页面中同时遍历多个list集合
在Jsp页面中,我们也许有这样的需求:从后端获取到多个List,但又想将这些List的值同时打印出来 比如, 有用户列表userList,user类有用户ID.用户名.用户性别等基本信息 有用户关系列 ...
- 攻防世界/强网杯 2019-supersqli
靶场地址:https://adworld.xctf.org.cn/task/answer?type=web&number=3&grade=1&id=5417&page= ...
- requests接口自动化6-Body里json格式数据形式的post请求:json
Body里json格式数据形式的post请求:用json传参 fiddler里请求响应内容: 传递的json数据 [{"stepId":"0","ca ...
- 数据可视化之分析篇(八)Power BI数据分析应用:结构百分比分析法
https://zhuanlan.zhihu.com/p/113113765 PowerBI数据分析02:结构百分比分析法 作者:海艳 结构百分比分析法,又称纵向分析,是指同一期间财务报表中不同项目间 ...
- JS中this指向的更改
JS中this指向的更改 JavaScript 中 this 的指向问题 前面已经总结过,但在实际开中, 很多场景都需要改变 this 的指向. 现在我们讨论更改 this 指向的问题. call更改 ...
- 手把手从零开始---封装一个vue视频播放器组件
现在,在网页上播放视频已经越来越流行,但是网上的资料鱼龙混杂,很难找到自己想要的,今天小编就自己的亲身开发体验,手把手从零开始---封装一个vue视频播放器组件. 作为一个老道的前端搬砖师,怎么可能会 ...
- bzoj3155Preprefix sum
bzoj3155Preprefix sum 题意: 询问一个数组前缀和数组的前缀和,支持单点修改. 题解: SSi=sigma(i,1,n)(n-i+1)*ai=(n+1)*Si-sigma(i,1, ...
- 随笔java面试基础
转:http://blog.csdn.net/wenwen360360/article/details/54969418 Application ―Java应用程序”是可以独立运行的Java程序.由J ...