机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。
Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。
随机森林算法只需要两个参数:构建的决策树的个数t,在决策树的每个节点进行分裂时需要考虑的输入特征的个数m。
1. 单棵决策树的构建:
(1)令N为训练样例的个数,则单棵决策树的输入样例的个数为N个从训练集中有放回的随机抽取N个训练样例。
(2)令训练样例的输入特征的个数为M,切m远远小于M,则我们在每颗决策树的每个节点上进行分裂时,从M个输入特征里随机选择m个输入特征,然后从这m个输入特征里选择一个最好的进行分裂。m在构建决策树的过程中不会改变。
(3)每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。不需要剪枝。
2. 随机森林的分类结果
按照1生成t个决策树之后,对于每个新的测试样例,综合多个决策树的分类结果来作为随机森林的分类结果。
(1)目标特征为数字类型:取t个决策树的平均值作为分类结果。
(2)目标特征为类别类型:少数服从多数,取单棵树分类结果最多的那个类别作为整个随机森林的分类结果。
3. 分类效果的评价
在随机森林中,无需交叉验证来评价其分类的准确性,随机森林自带OOB(out-of-bag)错误估计:
OOB:在构造单棵决策树时我们只是随机有放回的抽取了N个样例,所以可以用没有抽取到的样例来测试这棵决策树的分类准确性,这些样例大概占总样例数目的三分之一(作者这么说的,我还不知道理论上是如何出来的,但是可以自己做试验验证)。所以对于每个样例j,都有大约三分之一的决策树(记为SetT(j))在构造时没用到该样例,我们就用这些决策树来对这个样例进行分类。我们对于所有的训练样例j,用SetT(j)中的树组成的森林对其分类,然后看其分类结果和实际的类别是否相等,不相等的样例所占的比例就是OOB错误估计。OOB错误估计被证明是无偏的。
参考文献:
[3] Breiman自己对Random Forest的介绍
[4] 交叉验证介绍
机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介的更多相关文章
- 【机器学习】随机森林(Random Forest)
随机森林是一个最近比较火的算法 它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多)的数据,并且不用做特征选择 在训练完后, ...
- 机器学习技法:10 Random Forest
Roadmap Random Forest Algorithm Out-Of-Bag Estimate Feature Selection Random Forest in Action Summar ...
- 【机器学习】随机森林 Random Forest 得到模型后,评估参数重要性
在得出random forest 模型后,评估参数重要性 importance() 示例如下 特征重要性评价标准 %IncMSE 是 increase in MSE.就是对每一个变量 比如 X1 随机 ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Python optparser模块简介
Python optparser模块简介
- Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)
原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...
- [resource-]Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
reference: http://www.52nlp.cn/python-%e7%bd%91%e9%a1%b5%e7%88%ac%e8%99%ab-%e6%96%87%e6%9c%ac%e5%a4% ...
- 【Python】Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
本文转载自:https://www.cnblogs.com/colipso/p/4284510.html 好文 mark http://www.52nlp.cn/python-%E7%BD%91%E9 ...
- Random Forest总结
一.简介 RF = Bagging + Decision Tree 随机:数据采样随机,特征选择随机 森林:多个决策树并行放在一起 几个误区: 不是每棵树随机选择特征,而是每一个结点都随机选择固定数目 ...
随机推荐
- (转载)Java变量作用域详解
转载自http://www.cnblogs.com/AlanLee/p/6627949.html 大多数程序设计语言都提供了"作用域"(Scope)的概念. 对于在作用域里定义的名 ...
- Linq--一个集合中查找另一个集合,需熟悉这种写法
//获取科室与病区授权的护士信息 public List<SYS_ZGKSBQDYK> GetUserWardMapByWardCode(string wardCode) ...
- 从源码分析java.lang.String.isEmpty()
今天在写代码的时候用到了java.lang.String.isEmpty()的这个方法,之前也用过,今天突发奇想,就看了看源码,了解了解它的实现方法,总结出来,大家可以交流交流. 通常情况下,我们使用 ...
- JAVA HashMap的实现原理
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt359 1. HashMap的数据结构 数据结构中有数组和链表来实现对数据的存 ...
- 基于CAS的SSO(单点登录)实例
第一步 部署CAS-Server(服务端) 1.从CAS官方网站(http://developer.jasig.org/cas/)下载最新版本的CAS-Server(当前最新版本cas-server- ...
- Redis 常用数据结构及其控制命令整合
Redis 键值支持5种基本结构,分别是字符串,列表,哈希,集合,有序集合.每一种数据结构都有对应的取值和设值命令,辅助命令,除此之外,还有一些全局命令,用来管理Redis存储的所有 键. 全局命令 ...
- Java学习记录:降低耦合度
耦合度定义 耦合度(Coupling)是对模块间关联程度的度量.耦合的强弱取决与模块间接口的复杂性.调用模块的方式以及通过界面传送数据的多少. 模块间的耦合度是指模块之间的依赖关系,包括控制关系.调用 ...
- 闲话和grunt
一年半没更新是因为自己转岗了,android framework+system转前端,可以想象过程之苦逼,苦成了一首诗:很烦很烦/非常烦/非常非常十分烦/特别烦特烦/极其烦/贼烦/简直烦死了/啊——. ...
- Spring mybatis源码篇章-XMLLanguageDriver解析sql包装为SqlSource
前言:通过阅读源码对实现机制进行了解有利于陶冶情操,承接前文Spring mybatis源码篇章-MybatisDAO文件解析(二) 首先了解下sql mapper的动态sql语法 具体的动态sql的 ...
- 【Beta】阶段 第三次Daily Scrum Meeting
每日任务 ·1.本次会议为第三次 Meeting 会议 ·2.本次会议在周三上午9:40召开,会议时间为10分钟 一.今日站立式会议照片 二.每个人的工作(有work item的ID) 三.工作中遇到 ...