Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。

Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。

随机森林算法只需要两个参数:构建的决策树的个数t,在决策树的每个节点进行分裂时需要考虑的输入特征的个数m

1. 单棵决策树的构建:

(1)令N为训练样例的个数,则单棵决策树的输入样例的个数为N个从训练集中有放回的随机抽取N个训练样例。

(2)令训练样例的输入特征的个数为M,切m远远小于M,则我们在每颗决策树的每个节点上进行分裂时,从M个输入特征里随机选择m个输入特征,然后从这m个输入特征里选择一个最好的进行分裂。m在构建决策树的过程中不会改变。

(3)每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。不需要剪枝。

2. 随机森林的分类结果

按照1生成t个决策树之后,对于每个新的测试样例,综合多个决策树的分类结果来作为随机森林的分类结果。

(1)目标特征为数字类型:取t个决策树的平均值作为分类结果。

(2)目标特征为类别类型:少数服从多数,取单棵树分类结果最多的那个类别作为整个随机森林的分类结果。

3. 分类效果的评价

在随机森林中,无需交叉验证来评价其分类的准确性,随机森林自带OOB(out-of-bag)错误估计:

OOB:在构造单棵决策树时我们只是随机有放回的抽取了N个样例,所以可以用没有抽取到的样例来测试这棵决策树的分类准确性,这些样例大概占总样例数目的三分之一(作者这么说的,我还不知道理论上是如何出来的,但是可以自己做试验验证)。所以对于每个样例j,都有大约三分之一的决策树(记为SetT(j))在构造时没用到该样例,我们就用这些决策树来对这个样例进行分类。我们对于所有的训练样例j,用SetT(j)中的树组成的森林对其分类,然后看其分类结果和实际的类别是否相等,不相等的样例所占的比例就是OOB错误估计。OOB错误估计被证明是无偏的。

参考文献:

[1] Mahout Wiki-Random Forest

[2] Leo Breiman 2001年的paper

[3] Breiman自己对Random Forest的介绍

[4] 交叉验证介绍

 

机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介的更多相关文章

  1. 【机器学习】随机森林(Random Forest)

    随机森林是一个最近比较火的算法 它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多)的数据,并且不用做特征选择 在训练完后, ...

  2. 机器学习技法:10 Random Forest

    Roadmap Random Forest Algorithm Out-Of-Bag Estimate Feature Selection Random Forest in Action Summar ...

  3. 【机器学习】随机森林 Random Forest 得到模型后,评估参数重要性

    在得出random forest 模型后,评估参数重要性 importance() 示例如下 特征重要性评价标准 %IncMSE 是 increase in MSE.就是对每一个变量 比如 X1 随机 ...

  4. Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介

    Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...

  5. Kemaswill 机器学习 数据挖掘 推荐系统 Python optparser模块简介

      Python optparser模块简介

  6. Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)

    原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...

  7. [resource-]Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱

    reference: http://www.52nlp.cn/python-%e7%bd%91%e9%a1%b5%e7%88%ac%e8%99%ab-%e6%96%87%e6%9c%ac%e5%a4% ...

  8. 【Python】Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱

    本文转载自:https://www.cnblogs.com/colipso/p/4284510.html 好文 mark http://www.52nlp.cn/python-%E7%BD%91%E9 ...

  9. Random Forest总结

    一.简介 RF = Bagging + Decision Tree 随机:数据采样随机,特征选择随机 森林:多个决策树并行放在一起 几个误区: 不是每棵树随机选择特征,而是每一个结点都随机选择固定数目 ...

随机推荐

  1. 神奇的background

    background:url() fixed ....  可以实现页面向下滚动时背景图片 保持位置不变   感觉好像背景在随鼠标滚动而滚动一样

  2. System.Globalization.CultureInfo.InvariantCulture 解决不同地域字符串格式不同问题

    同样的DateTime.ToShortDateString()   在不同的地域输出格式不同 如在美国的 日期格式为 :  月-日-年 如在中国的 日期格式为 :  年-月-日 一些时候,这个格式就会 ...

  3. window.requestAnimationFrame() ,做逐帧动画,你值得拥有

    window.requestAnimationFrame() 方法告诉浏览器您希望执行动画,并请求浏览器调用指定的函数在下一次重绘之前更新动画.该方法使用一个回调函数作为参数,这个回调函数会在浏览器重 ...

  4. ★RFC标准库_目录链接

    RFC(Request For Comments)是一个国际标准化的数据库,记录了从计算机到互联网的海量标准协议.它是一个免费公开的IT标准文件分享平台,其内容也在不断增长,与时俱进.它与ISO等组织 ...

  5. php的mysql语句里变量加不加单引号问题

    第一种[{$_GET['id']}加不加单引号都能正常执行没问题] $sql = "select * from `news` where `id` = {$_GET['id']}" ...

  6. Java 第八周总结

    1. 本周学习总结 2. 书面作业 1.List中指定元素的删除 1.1 实验总结 list中可以通过list.get(i)来获取具体第几个的元素的值,再通过compareTo来对比 通过in.has ...

  7. 201521123061 《Java程序设计》第四周学习总结

    201521123061 <Java程序设计>第四周学习总结 1. 本章学习总结 (1)思维导图: --- (2)上课内容总结: 第四周学习了Java中的继承与多态,思维导图中已经给出了本 ...

  8. 201521123002 《Java程序设计》第3周学习总结

    1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识组织起来.请使用纸笔或者下面的工具画出本周学习到的知识点.截图或者拍照上传. 2. 书面作 ...

  9. JAVA课程设计 猜数游戏 团队

    团队名称,成员介绍 名称: 猜数游戏 成员: 网络1514 201521123086 周颖强 网络1514 201521123087蒋勃超 项目git地址 git.oschina.net/jbc113 ...

  10. HTML结构

    HTML:超文本标记语言. 可以放除了文本之外的内容,像图片.音频.视频等 由很多标签组成 html基本结构: <html> <head> 头标签存放网页信息,编码格式等 &l ...