机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。
Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。
随机森林算法只需要两个参数:构建的决策树的个数t,在决策树的每个节点进行分裂时需要考虑的输入特征的个数m。
1. 单棵决策树的构建:
(1)令N为训练样例的个数,则单棵决策树的输入样例的个数为N个从训练集中有放回的随机抽取N个训练样例。
(2)令训练样例的输入特征的个数为M,切m远远小于M,则我们在每颗决策树的每个节点上进行分裂时,从M个输入特征里随机选择m个输入特征,然后从这m个输入特征里选择一个最好的进行分裂。m在构建决策树的过程中不会改变。
(3)每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。不需要剪枝。
2. 随机森林的分类结果
按照1生成t个决策树之后,对于每个新的测试样例,综合多个决策树的分类结果来作为随机森林的分类结果。
(1)目标特征为数字类型:取t个决策树的平均值作为分类结果。
(2)目标特征为类别类型:少数服从多数,取单棵树分类结果最多的那个类别作为整个随机森林的分类结果。
3. 分类效果的评价
在随机森林中,无需交叉验证来评价其分类的准确性,随机森林自带OOB(out-of-bag)错误估计:
OOB:在构造单棵决策树时我们只是随机有放回的抽取了N个样例,所以可以用没有抽取到的样例来测试这棵决策树的分类准确性,这些样例大概占总样例数目的三分之一(作者这么说的,我还不知道理论上是如何出来的,但是可以自己做试验验证)。所以对于每个样例j,都有大约三分之一的决策树(记为SetT(j))在构造时没用到该样例,我们就用这些决策树来对这个样例进行分类。我们对于所有的训练样例j,用SetT(j)中的树组成的森林对其分类,然后看其分类结果和实际的类别是否相等,不相等的样例所占的比例就是OOB错误估计。OOB错误估计被证明是无偏的。
参考文献:
[3] Breiman自己对Random Forest的介绍
[4] 交叉验证介绍
机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介的更多相关文章
- 【机器学习】随机森林(Random Forest)
随机森林是一个最近比较火的算法 它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多)的数据,并且不用做特征选择 在训练完后, ...
- 机器学习技法:10 Random Forest
Roadmap Random Forest Algorithm Out-Of-Bag Estimate Feature Selection Random Forest in Action Summar ...
- 【机器学习】随机森林 Random Forest 得到模型后,评估参数重要性
在得出random forest 模型后,评估参数重要性 importance() 示例如下 特征重要性评价标准 %IncMSE 是 increase in MSE.就是对每一个变量 比如 X1 随机 ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Python optparser模块简介
Python optparser模块简介
- Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)
原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...
- [resource-]Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
reference: http://www.52nlp.cn/python-%e7%bd%91%e9%a1%b5%e7%88%ac%e8%99%ab-%e6%96%87%e6%9c%ac%e5%a4% ...
- 【Python】Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
本文转载自:https://www.cnblogs.com/colipso/p/4284510.html 好文 mark http://www.52nlp.cn/python-%E7%BD%91%E9 ...
- Random Forest总结
一.简介 RF = Bagging + Decision Tree 随机:数据采样随机,特征选择随机 森林:多个决策树并行放在一起 几个误区: 不是每棵树随机选择特征,而是每一个结点都随机选择固定数目 ...
随机推荐
- 神奇的background
background:url() fixed .... 可以实现页面向下滚动时背景图片 保持位置不变 感觉好像背景在随鼠标滚动而滚动一样
- System.Globalization.CultureInfo.InvariantCulture 解决不同地域字符串格式不同问题
同样的DateTime.ToShortDateString() 在不同的地域输出格式不同 如在美国的 日期格式为 : 月-日-年 如在中国的 日期格式为 : 年-月-日 一些时候,这个格式就会 ...
- window.requestAnimationFrame() ,做逐帧动画,你值得拥有
window.requestAnimationFrame() 方法告诉浏览器您希望执行动画,并请求浏览器调用指定的函数在下一次重绘之前更新动画.该方法使用一个回调函数作为参数,这个回调函数会在浏览器重 ...
- ★RFC标准库_目录链接
RFC(Request For Comments)是一个国际标准化的数据库,记录了从计算机到互联网的海量标准协议.它是一个免费公开的IT标准文件分享平台,其内容也在不断增长,与时俱进.它与ISO等组织 ...
- php的mysql语句里变量加不加单引号问题
第一种[{$_GET['id']}加不加单引号都能正常执行没问题] $sql = "select * from `news` where `id` = {$_GET['id']}" ...
- Java 第八周总结
1. 本周学习总结 2. 书面作业 1.List中指定元素的删除 1.1 实验总结 list中可以通过list.get(i)来获取具体第几个的元素的值,再通过compareTo来对比 通过in.has ...
- 201521123061 《Java程序设计》第四周学习总结
201521123061 <Java程序设计>第四周学习总结 1. 本章学习总结 (1)思维导图: --- (2)上课内容总结: 第四周学习了Java中的继承与多态,思维导图中已经给出了本 ...
- 201521123002 《Java程序设计》第3周学习总结
1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识组织起来.请使用纸笔或者下面的工具画出本周学习到的知识点.截图或者拍照上传. 2. 书面作 ...
- JAVA课程设计 猜数游戏 团队
团队名称,成员介绍 名称: 猜数游戏 成员: 网络1514 201521123086 周颖强 网络1514 201521123087蒋勃超 项目git地址 git.oschina.net/jbc113 ...
- HTML结构
HTML:超文本标记语言. 可以放除了文本之外的内容,像图片.音频.视频等 由很多标签组成 html基本结构: <html> <head> 头标签存放网页信息,编码格式等 &l ...