机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。
Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。
随机森林算法只需要两个参数:构建的决策树的个数t,在决策树的每个节点进行分裂时需要考虑的输入特征的个数m。
1. 单棵决策树的构建:
(1)令N为训练样例的个数,则单棵决策树的输入样例的个数为N个从训练集中有放回的随机抽取N个训练样例。
(2)令训练样例的输入特征的个数为M,切m远远小于M,则我们在每颗决策树的每个节点上进行分裂时,从M个输入特征里随机选择m个输入特征,然后从这m个输入特征里选择一个最好的进行分裂。m在构建决策树的过程中不会改变。
(3)每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。不需要剪枝。
2. 随机森林的分类结果
按照1生成t个决策树之后,对于每个新的测试样例,综合多个决策树的分类结果来作为随机森林的分类结果。
(1)目标特征为数字类型:取t个决策树的平均值作为分类结果。
(2)目标特征为类别类型:少数服从多数,取单棵树分类结果最多的那个类别作为整个随机森林的分类结果。
3. 分类效果的评价
在随机森林中,无需交叉验证来评价其分类的准确性,随机森林自带OOB(out-of-bag)错误估计:
OOB:在构造单棵决策树时我们只是随机有放回的抽取了N个样例,所以可以用没有抽取到的样例来测试这棵决策树的分类准确性,这些样例大概占总样例数目的三分之一(作者这么说的,我还不知道理论上是如何出来的,但是可以自己做试验验证)。所以对于每个样例j,都有大约三分之一的决策树(记为SetT(j))在构造时没用到该样例,我们就用这些决策树来对这个样例进行分类。我们对于所有的训练样例j,用SetT(j)中的树组成的森林对其分类,然后看其分类结果和实际的类别是否相等,不相等的样例所占的比例就是OOB错误估计。OOB错误估计被证明是无偏的。
参考文献:
[3] Breiman自己对Random Forest的介绍
[4] 交叉验证介绍
机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介的更多相关文章
- 【机器学习】随机森林(Random Forest)
随机森林是一个最近比较火的算法 它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多)的数据,并且不用做特征选择 在训练完后, ...
- 机器学习技法:10 Random Forest
Roadmap Random Forest Algorithm Out-Of-Bag Estimate Feature Selection Random Forest in Action Summar ...
- 【机器学习】随机森林 Random Forest 得到模型后,评估参数重要性
在得出random forest 模型后,评估参数重要性 importance() 示例如下 特征重要性评价标准 %IncMSE 是 increase in MSE.就是对每一个变量 比如 X1 随机 ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Python optparser模块简介
Python optparser模块简介
- Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)
原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...
- [resource-]Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
reference: http://www.52nlp.cn/python-%e7%bd%91%e9%a1%b5%e7%88%ac%e8%99%ab-%e6%96%87%e6%9c%ac%e5%a4% ...
- 【Python】Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
本文转载自:https://www.cnblogs.com/colipso/p/4284510.html 好文 mark http://www.52nlp.cn/python-%E7%BD%91%E9 ...
- Random Forest总结
一.简介 RF = Bagging + Decision Tree 随机:数据采样随机,特征选择随机 森林:多个决策树并行放在一起 几个误区: 不是每棵树随机选择特征,而是每一个结点都随机选择固定数目 ...
随机推荐
- ascii codec can't decode byte 0xe8 in position 0:ordinal not in range(128) python代码报错
import sys reload(sys) sys.setdefaultencoding('utf-8')
- jmeter ---json几种读取方式,ArrayList循环读取
在之前写过提取json数据格式的文章,这次对jmeter读取json数据格式进行整理. 举例一个接口的response 格式如下: { "data" : { "devic ...
- Linq 实现sql中的not in和in条件查询
T-SQL的IN: Select ProductID, ProductName, CategoryID From dbo.Products Where CategoryID in (1, 2) T-S ...
- JavaScript学习日志(二):面向对象的程序设计
1,ECMAScript不像其他面向对象的语言那样有类的概念,它的对象与其他不同. 2,ECMAScript有两种属性:数据属性和访问器属性.([[]]这种双中括号表示属性为内部属性,外部不可直接访问 ...
- ELM极限学习机
极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解神经网络算法.ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),ELM比传统的 ...
- RAID基础知识总结
1.RAID RAID:Redundant Arrays of Inexpensive(Independent)Disks,即独立磁盘冗余阵列,简称磁盘阵列.简单地说就是把多个独立的硬盘组合起来,从而 ...
- oop作业五 基本构架
计算器的主体框架 链接 githu链接 031602510 面向对象的分类 分成四个类,分别有着自己的属性功能: 栈的学习 栈(stack)是一个"后进后出"的结构(已知)--从& ...
- 个人作业(3)----个人总结(Alpha阶段)
一.个人总结. 个人完成的任务:在此阶段我完成了用户调研.部分测试以及部分博客书写. 个人及团队心得:经过几周Alpha阶段开发后,我大致了解了开发软件的过程,开发一个软件并没有以往想象中那么简易,在 ...
- java课程设计--We Talk(201521123061)
java课程设计--We Talk(201521123061) 团队博客链接:http://www.cnblogs.com/slickghost/ 数据库 一.通过Dao模式建立与数据库的连接 1.数 ...
- 201521123063 JAVA程序设计 第二周学习总结
1.本周学习重点(2.27-3.5) java中的数组 以二维数组为例,数组名为scores,则 (1)先声明数组 int[][] scores;或int scores[][];或int[] scor ...