Time Limit: 10 Sec  Memory Limit: 512 MB

Input

第一行为一个整数N表示战线的总长度。

第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai。

Output

共一个整数,表示最小的战线花费值。

Sample Input

10
2 3 1 5 4 5 6 3 1 2

Sample Output

18

HINT

1<=N<=10^6,1<=Ai<=10^9


设$f[i]$为已经完成$i+1$到$n$,在$i$放塔的最小代价

$f[i]=a[i]+min(f[j]+ \frac {(j-i-1)(j-i)}{2}),i<j<=n$

移项转化,得

$f[j]+\frac{j(j-1)}{2}=ij+f[i]-\frac{i(i+1)}{2}$

$k=i,x=j$单调

凸包维护单调队列,复杂度$O(n)$

#include<cstdio>
typedef long long ll;
inline ll min(ll A,ll B){return A<B?A:B;}
inline ll max(ll A,ll B){return A>B?A:B;}
int read(){
char c=getchar(); int x=;
while(c<''||c>'') c=getchar();
while(''<=c&&c<='') x=x*+c-,c=getchar();
return x;
}
#define N 1000005
int n,a[N],h[N],L,R; ll f[N],ans=1e16;
inline ll y(ll j){return f[j]+j*(j-)/;}
inline int chk(ll A,ll B,ll kx,ll ky){return (y(A)-y(B))*kx>=ky*(A-B);}
int main(){
R=n=read();
for(register int i=;i<=n;++i) a[i]=read();
f[n]=a[n]; h[L=R=]=n;
for(register ll i=n-;i;--i){
while(L<R&&chk(h[L],h[L+],,i)) ++L;
f[i]=a[i]+f[h[L]]+(h[L]-i)*(h[L]-i-)/;
while(L<R&&chk(h[R],h[R-],h[R]-i,y(h[R])-y(i))) --R;
h[++R]=i;
ans=min(ans,f[i]+i*(i-)/);
}printf("%lld",ans);
return ;
}

bzoj3156 防御准备(斜率优化)的更多相关文章

  1. bzoj3156 防御准备 - 斜率优化

    Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...

  2. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  3. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  4. 【BZOJ3156】防御准备 斜率优化

    [BZOJ3156]防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小 ...

  5. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  6. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  7. 【BZOJ3156】防御准备(动态规划,斜率优化)

    [BZOJ3156]防御准备(动态规划,斜率优化) 题面 BZOJ 题解 从右往左好烦啊,直接\(reverse\)一下再看题. 设\(f[i]\)表示第\(i\)个位置强制建立检查站时,前面都满足条 ...

  8. 【BZOJ-3156】防御准备 DP + 斜率优化

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 951  Solved: 446[Submit][Status][Discuss] ...

  9. BZOJ3156 防御准备 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...

  10. BZOJ3156 防御准备(动态规划+斜率优化)

    设f[i]为在i放置守卫塔时1~i的最小花费.那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]. 显然这是个斜率优化入门题.将不与i.j同时相关的提出,得f[i]=min ...

随机推荐

  1. 一、创建并打包Cordova的App工程

    1.创建ionic4 & Angular项目 ionic start myApp tabs --type=angular 2.添加ios和android平台 ionic cordova pre ...

  2. 前端使用crypto-js进行加解密

    import CryptoJS from 'crypto-js' export const crypto = { options() { return { key: CryptoJS.enc.Utf8 ...

  3. 大数阶乘(N! Plus)问题

    解题思路 将正整数N从1到N逐位相乘,即1 * 2 * 3...... * (N-1) * N.每次相乘后的值会存储到array[]中,其中一个数组元素存储值中的一位数.当值小于10时直接存储,值大于 ...

  4. Day_03-函数和模块的使用

    使用函数求阶乘 使用while循环的代码: m = float(input('m = ')) n = float(input('n = ')) mn = m - n fm = 1 while m != ...

  5. 在asp.net 中怎样上传文件夹

    以ASP.NET Core WebAPI 作后端 API ,用 Vue 构建前端页面,用 Axios 从前端访问后端 API ,包括文件的上传和下载. 准备文件上传的API #region 文件上传  ...

  6. Windows上安装Apache

    1.下载 (1)进入Apache官网http://httpd.apache.org— (2)点击Download (3)点击Files for Microsoft Windows (4)点击Apach ...

  7. Android环境配置之正式版AndroidStudio1.0

    昨天看见 Android Studio 1.0 正式版本发布了:心里挺高兴的. 算是忠实用户了吧,从去年开发者大会一开始出现 AS 后就开始使用了:也是从那时开始就基本没有用过 Eclipse 了:一 ...

  8. 2018-2019-2 20175214 实验四《Android程序设计》实验报告

    实验四<Android程序设计>实验报告 一.前期准备 安装Android Studio 参考http://www.cnblogs.com/rocedu/p/6371315.html#SE ...

  9. IBM Security App Scan Standard 工具的使用

    1.AppScan是什么? AppScan是IBM的一款web安全扫描工具,可以利用爬虫技术进行网站安全渗透测试,根据网站入口自动对网页链接进行安全扫描,扫描之后会提供扫描报告和修复建议等. AppS ...

  10. Laravel 在homestead 平台上命令

    使用以下命令查看 Heroku 站点地址: $ heroku domains