题目链接:https://vjudge.net/problem/LightOJ-1370

1370 - Bi-shoe and Phi-shoe
Time Limit: 2 second(s) Memory Limit: 32 MB

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo's length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

Sample Input

Output for Sample Input

3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha

题意:

给出n个数,为每个数x找到满足:x<=Euler(y) 的最小的y,其中Euler()为欧拉函数。

题解:

可知,当y为素数,Euler(y) = y-1。所以,只需从x+1开始,找到第一个素数即可。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; bool vis[MAXN]; void getPrime()
{
int m = (int)sqrt(MAXN);
memset(vis, , sizeof(vis));
vis[] = ;
for(int i = ; i<=m; i++) if(!vis[i])
for(int j = i*i; j<MAXN; j+=i)
vis[j] = ;
} int main()
{
getPrime();
int T, n;
scanf("%d", &T);
for(int kase = ; kase<=T; kase++)
{
LL ans = ;
scanf("%d", &n);
for(int i = ; i<=n; i++)
{
int x;
scanf("%d", &x);
for(int j = x+;;j++) if(!vis[j]){
ans += j;
break;
}
}
printf("Case %d: %lld Xukha\n", kase,ans);
}
}

LightOJ1370 Bi-shoe and Phi-shoe —— 欧拉函数的更多相关文章

  1. 【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)

    [LightOJ1370]Bi-shoe and Phi-shoe(欧拉函数) 题面 Vjudge 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 题解 首先 ...

  2. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

  3. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  4. HDU 4483 Lattice triangle(欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...

  5. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  6. 【欧拉函数】【HDU1286】 找新朋友

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  7. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  8. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...

  9. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  10. [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]

    题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...

随机推荐

  1. JVM 常量池

    最近正好在研究这个问题,题主问题本身是有问题的,在JDK7中HotSpot的常量池是放在Java Heap中,并非题目中的native memory中.在JDK6中是放在Perm Space.题主可以 ...

  2. Arduino可穿戴教程ArduinoIDE新建编辑源文件

    Arduino可穿戴教程ArduinoIDE新建编辑源文件 Arduino IDE新建源文件 Arduino IDE启动后默认就新建了一个源文件,如图2.20所示.新建的源文件名称是以sketch_开 ...

  3. DELPHI10.2的LINUX数据库开发环境配置

    DELPHI10.2的LINUX数据库开发环境配置 ubuntu使用firedac访问mysql1.安装mysql-client包sudo apt-get install mysql-client m ...

  4. CNN网络--VGGNet

    Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image ...

  5. C 标准库 - <locale.h>

    C 标准库 - <locale.h> 简介 locale.h 头文件定义了特定地域的设置,比如日期格式和货币符号.接下来我们将介绍一些宏,以及一个重要的结构 struct lconv 和两 ...

  6. cas 单点登录(SSO)之中的一个: jasig cas-server 安装

    cas 单点登录(SSO)实验之中的一个: jasig cas-server 安装 參考文章: http://my.oschina.net/indestiny/blog/200768#comments ...

  7. ffplay 播放m3u8 hls Failed to open segment of playlist 0

    用ffplay 播放m3u8文件 出现 Failed to open segment of playlist 0,Error when loading first segment 'test0.ts' ...

  8. java stoi

    package string.string1_4; import java.util.Scanner; public class StrToInt { /** * 将str转换为int整数 * 1. ...

  9. 理解DOMSTRING、DOCUMENT、FORMDATA、BLOB、FILE、ARRAYBUFFER数据类型

    一.XMLHttpRequest 2.0的家臣们 我大学那会儿,一个称为Ajax的东西对前端行业造成了深远影响,不仅是JS语言,而包括前端地位.职位兴起以及工作分工等.抛开IE6浏览器不谈,其他浏览器 ...

  10. Webkit JNI

    WebCoreFrameBridge.cpp BrowserFrame通过jni传下来的调用都会调用到WebCoreFrameBridge.cpp中的对应函数中,其他webkit的模块想回调信息给Br ...