LightOJ1370 Bi-shoe and Phi-shoe —— 欧拉函数
题目链接:https://vjudge.net/problem/LightOJ-1370
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,
Score of a bamboo = Φ (bamboo's length)
(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.
The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].
Output
For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.
Sample Input |
Output for Sample Input |
|
3 5 1 2 3 4 5 6 10 11 12 13 14 15 2 1 1 |
Case 1: 22 Xukha Case 2: 88 Xukha Case 3: 4 Xukha |
题意:
给出n个数,为每个数x找到满足:x<=Euler(y) 的最小的y,其中Euler()为欧拉函数。
题解:
可知,当y为素数,Euler(y) = y-1。所以,只需从x+1开始,找到第一个素数即可。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; bool vis[MAXN]; void getPrime()
{
int m = (int)sqrt(MAXN);
memset(vis, , sizeof(vis));
vis[] = ;
for(int i = ; i<=m; i++) if(!vis[i])
for(int j = i*i; j<MAXN; j+=i)
vis[j] = ;
} int main()
{
getPrime();
int T, n;
scanf("%d", &T);
for(int kase = ; kase<=T; kase++)
{
LL ans = ;
scanf("%d", &n);
for(int i = ; i<=n; i++)
{
int x;
scanf("%d", &x);
for(int j = x+;;j++) if(!vis[j]){
ans += j;
break;
}
}
printf("Case %d: %lld Xukha\n", kase,ans);
}
}
LightOJ1370 Bi-shoe and Phi-shoe —— 欧拉函数的更多相关文章
- 【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)
[LightOJ1370]Bi-shoe and Phi-shoe(欧拉函数) 题面 Vjudge 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 题解 首先 ...
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
- poj3696 快速幂的优化+欧拉函数+gcd的优化+互质
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...
- HDU 4483 Lattice triangle(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...
- UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...
- 【欧拉函数】【HDU1286】 找新朋友
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
随机推荐
- about乘法逆元
本博客部分摘自 hwim 定义 乘法逆元的定义:若存在正整数a,b,p, 满足ab = 1(mod p), 则称a 是b 的乘法逆元, 或称b 是a 的乘法逆元.b ≡ a-1 (mod p),a ...
- 某考试 T3 Try to find out the wrong in the test
Discription Hint: 对于 100% 的数据, n<=10^6.
- 邁向IT專家成功之路的三十則鐵律 鐵律十八:IT人求職之道-文化
IT人所從事的工作是一個求新求變速度最快的行業,因此您所待的企業IT部門或資訊公司,其組織文化將關係到您在這間公司服務期間,是否能夠快速成長的決定因素.遇到不良的組織文化建議您三個就可以走人了,千萬別 ...
- 【IntelliJ idea/My/ecplise】启动项目前,修改配置JVM参数
My/ecplise下都是一样的: IDEA下:
- python matplotlib包图像配色方案
可选的配色方案: Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu, BuPu_r, CMRmap, CMRmap_ ...
- 使用纯CSS3实现一个日食动画
日食现象是月亮挡在了地球和太阳之间,也就是月亮遮挡住了太阳. 所以要构造日食,我们须要2个对象:一个代表月亮,一个代表太阳. <div class="eclipse sun" ...
- phonegap工程搭建基础(一)
官网:http://cordova.apache.org 一.环境配置 1. 安装Cordova on OS X and Linux: $ sudo npm install -g cord ...
- PS 如何制作柔和的边框
柔和边框制作 1 新建一个图层,按填充为黑色.(填充当前图层为前景色 A/T+Delete 背景色 CTRL+Delete),不透明度设为60%.混合模式为正片叠底, 2 选择椭圆选择一片区域(也 ...
- mysql: 关于MySQL InnoDB锁行还是锁表?
baidu zone - 关于MYSQL Innodb 锁行还是锁表,深入讲解
- 如何获得(读取)web.xml配置文件的參数
參考代码例如以下: com.atguigu.struts2.app.converters.DateConverter.java public DateFormat getDateFormat(){ i ...