LightOJ1370 Bi-shoe and Phi-shoe —— 欧拉函数
题目链接:https://vjudge.net/problem/LightOJ-1370
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,
Score of a bamboo = Φ (bamboo's length)
(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.
The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].
Output
For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.
Sample Input |
Output for Sample Input |
|
3 5 1 2 3 4 5 6 10 11 12 13 14 15 2 1 1 |
Case 1: 22 Xukha Case 2: 88 Xukha Case 3: 4 Xukha |
题意:
给出n个数,为每个数x找到满足:x<=Euler(y) 的最小的y,其中Euler()为欧拉函数。
题解:
可知,当y为素数,Euler(y) = y-1。所以,只需从x+1开始,找到第一个素数即可。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; bool vis[MAXN]; void getPrime()
{
int m = (int)sqrt(MAXN);
memset(vis, , sizeof(vis));
vis[] = ;
for(int i = ; i<=m; i++) if(!vis[i])
for(int j = i*i; j<MAXN; j+=i)
vis[j] = ;
} int main()
{
getPrime();
int T, n;
scanf("%d", &T);
for(int kase = ; kase<=T; kase++)
{
LL ans = ;
scanf("%d", &n);
for(int i = ; i<=n; i++)
{
int x;
scanf("%d", &x);
for(int j = x+;;j++) if(!vis[j]){
ans += j;
break;
}
}
printf("Case %d: %lld Xukha\n", kase,ans);
}
}
LightOJ1370 Bi-shoe and Phi-shoe —— 欧拉函数的更多相关文章
- 【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)
[LightOJ1370]Bi-shoe and Phi-shoe(欧拉函数) 题面 Vjudge 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 题解 首先 ...
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
- poj3696 快速幂的优化+欧拉函数+gcd的优化+互质
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...
- HDU 4483 Lattice triangle(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...
- UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...
- 【欧拉函数】【HDU1286】 找新朋友
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
随机推荐
- (五)github删除仓库
一.一直学习怎么创建仓库,创建了太多仓库,一直不知道咋删除,有点懵,其实很简单,就是对英文不太习惯,要加深英文水平. 找到setting,然后再下面找到danger Zone
- BZOJ——2438: [中山市选2011]杀人游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=2438 Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个 ...
- char 转string
c++: string.c_str() ---------> c: char c; string str;stringstream stream;stream << ...
- 安装部署k8s-版本-1.13
1.环境准备 # 统一hosts cat /etc/hosts 10.0.0.10 k8s-master 10.0.0.20 k8s-node1 10.0.0.30 k8s-node2 # 同步时间 ...
- POJ 3259 Wormholes 最短路+负环
原题链接:http://poj.org/problem?id=3259 题意 有个很厉害的农民,它可以穿越虫洞去他的农场,当然他也可以通过道路,虫洞都是单向的,道路都是双向的,道路会花时间,虫洞会倒退 ...
- 小R与手机
Description 小R有n部手机,为了便于管理,他对一些手机设置了"呼叫转移"的功能. 具体来说,第 i(1≤i≤n) 部手机有个参数 ai(0≤ai≤n,ai≠i) .若 ...
- Linux 在VMware中搭建CentOS6.5虚拟机
原文:http://www.cnblogs.com/PurpleDream/p/4263465.html Linux 在VMware中搭建CentOS6.5虚拟机 前言: 本文主要是我在大家 ...
- 赞一下TMS Software 和 AdvStringGrid
非常久前给Support发Email问能不能在设计期给AdvStringGrid标题加个数字标识.每次我都是自己改代码加上去.这次升级到新版本号,没想到增加了这个功能: 功能虽小可是非常有用,非常多的 ...
- nload 命令
网卡 流量监控命令 // 安装 yum intall nload nload 上下page 键 切换网卡查看
- Git经常使用命令
git --version 版本号号git help 帮助gitk 是个图形化的查看工具.gitk --all 所有分支历史-----------------------git pull 先拉git ...