一、安装jdk

jdk版本最好是1.7以上,设置好环境变量,安装过程,略。

二、安装Maven

我选择的Maven版本是3.3.3,安装过程,略。

编辑Maven安装目录conf/settings.xml文件,

<!-- 修改Maven 库存放目录-->
<localRepository>D:\maven-repository\repository</localRepository>

三、安装Idea

安装过程,略。

四、创建Spark项目

1、新建一个Spark项目,

2、选择Maven,从模板创建项目,

3、填写项目GroupId等,

4、选择本地安装的Maven和Maven配置文件。

5、next

6、创建完毕,查看新项目结构:

7、自动更新Maven pom文件

8、编译项目

如果出现这种错误,这个错误是由于Junit版本造成的,可以删掉Test,和pom.xml文件中Junit的相关依赖,

即删掉这两个Scala类:

和pom.xml文件中的Junit依赖:

    <dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>

 9、刷新Maven依赖

10、引入Jdk和Scala开发库

11、在pom.xml加入相关的依赖包,包括Hadoop、Spark等

<dependency>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
<version>1.1.1</version>
<type>jar</type>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.1</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.9</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.1</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.5.1</version>
</dependency>

  然后刷新maven的依赖,

12、新建一个Scala Object。

测试代码为:

  def main(args: Array[String]) {
println("Hello World!")
val sparkConf = new SparkConf().setMaster("local").setAppName("test")
val sparkContext = new SparkContext(sparkConf)
}

  执行,

如果报了以下错误,

java.lang.SecurityException: class "javax.servlet.FilterRegistration"'s signer information does not match signer information of other classes in the same package
at java.lang.ClassLoader.checkCerts(ClassLoader.java:952)
at java.lang.ClassLoader.preDefineClass(ClassLoader.java:666)
at java.lang.ClassLoader.defineClass(ClassLoader.java:794)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:449)
at java.net.URLClassLoader.access$100(URLClassLoader.java:71)
at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
at org.spark-project.jetty.servlet.ServletContextHandler.<init>(ServletContextHandler.java:136)
at org.spark-project.jetty.servlet.ServletContextHandler.<init>(ServletContextHandler.java:129)
at org.spark-project.jetty.servlet.ServletContextHandler.<init>(ServletContextHandler.java:98)
at org.apache.spark.ui.JettyUtils$.createServletHandler(JettyUtils.scala:110)
at org.apache.spark.ui.JettyUtils$.createServletHandler(JettyUtils.scala:101)
at org.apache.spark.ui.WebUI.attachPage(WebUI.scala:78)
at org.apache.spark.ui.WebUI$$anonfun$attachTab$1.apply(WebUI.scala:62)
at org.apache.spark.ui.WebUI$$anonfun$attachTab$1.apply(WebUI.scala:62)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.ui.WebUI.attachTab(WebUI.scala:62)
at org.apache.spark.ui.SparkUI.initialize(SparkUI.scala:61)
at org.apache.spark.ui.SparkUI.<init>(SparkUI.scala:74)
at org.apache.spark.ui.SparkUI$.create(SparkUI.scala:190)
at org.apache.spark.ui.SparkUI$.createLiveUI(SparkUI.scala:141)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:466)
at com.test.Test$.main(Test.scala:13)
at com.test.Test.main(Test.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)

  可以把servlet-api 2.5 jar删除即可:

最好的办法是删除pom.xml中相关的依赖,即

    <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.1</version>
</dependency>

最后的pom.xml文件的依赖是

<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.1</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.5.1</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>1.5.1</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.5.2</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.5.2</version>
</dependency> <dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-avro_2.10</artifactId>
<version>2.0.1</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.5.2</version>
</dependency> </dependencies>

  

  如果是报了这个错误,也没有什么问题,程序依旧可以执行,

java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:356)
at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:371)
at org.apache.hadoop.util.Shell.<clinit>(Shell.java:364)
at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:80)
at org.apache.hadoop.security.SecurityUtil.getAuthenticationMethod(SecurityUtil.java:611)
at org.apache.hadoop.security.UserGroupInformation.initialize(UserGroupInformation.java:272)
at org.apache.hadoop.security.UserGroupInformation.ensureInitialized(UserGroupInformation.java:260)
at org.apache.hadoop.security.UserGroupInformation.loginUserFromSubject(UserGroupInformation.java:790)
at org.apache.hadoop.security.UserGroupInformation.getLoginUser(UserGroupInformation.java:760)
at org.apache.hadoop.security.UserGroupInformation.getCurrentUser(UserGroupInformation.java:633)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2084)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2084)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:2084)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:311)
at com.test.Test$.main(Test.scala:13)
at com.test.Test.main(Test.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)

  最后看到的正常输出:

Hello World!
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/09/19 11:21:29 INFO SparkContext: Running Spark version 1.5.1
16/09/19 11:21:29 ERROR Shell: Failed to locate the winutils binary in the hadoop binary path
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:356)
at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:371)
at org.apache.hadoop.util.Shell.<clinit>(Shell.java:364)
at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:80)
at org.apache.hadoop.security.SecurityUtil.getAuthenticationMethod(SecurityUtil.java:611)
at org.apache.hadoop.security.UserGroupInformation.initialize(UserGroupInformation.java:272)
at org.apache.hadoop.security.UserGroupInformation.ensureInitialized(UserGroupInformation.java:260)
at org.apache.hadoop.security.UserGroupInformation.loginUserFromSubject(UserGroupInformation.java:790)
at org.apache.hadoop.security.UserGroupInformation.getLoginUser(UserGroupInformation.java:760)
at org.apache.hadoop.security.UserGroupInformation.getCurrentUser(UserGroupInformation.java:633)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2084)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2084)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:2084)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:311)
at com.test.Test$.main(Test.scala:13)
at com.test.Test.main(Test.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
16/09/19 11:21:29 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/09/19 11:21:30 INFO SecurityManager: Changing view acls to: pc
16/09/19 11:21:30 INFO SecurityManager: Changing modify acls to: pc
16/09/19 11:21:30 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(pc); users with modify permissions: Set(pc)
16/09/19 11:21:30 INFO Slf4jLogger: Slf4jLogger started
16/09/19 11:21:31 INFO Remoting: Starting remoting
16/09/19 11:21:31 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@192.168.51.143:52500]
16/09/19 11:21:31 INFO Utils: Successfully started service 'sparkDriver' on port 52500.
16/09/19 11:21:31 INFO SparkEnv: Registering MapOutputTracker
16/09/19 11:21:31 INFO SparkEnv: Registering BlockManagerMaster
16/09/19 11:21:31 INFO DiskBlockManager: Created local directory at C:\Users\pc\AppData\Local\Temp\blockmgr-f9ea7f8c-68f9-4f9b-a31e-b87ec2e702a4
16/09/19 11:21:31 INFO MemoryStore: MemoryStore started with capacity 966.9 MB
16/09/19 11:21:31 INFO HttpFileServer: HTTP File server directory is C:\Users\pc\AppData\Local\Temp\spark-64cccfb4-46c8-4266-92c1-14cfc6aa2cb3\httpd-5993f955-0d92-4233-b366-c9a94f7122bc
16/09/19 11:21:31 INFO HttpServer: Starting HTTP Server
16/09/19 11:21:31 INFO Utils: Successfully started service 'HTTP file server' on port 52501.
16/09/19 11:21:31 INFO SparkEnv: Registering OutputCommitCoordinator
16/09/19 11:21:31 INFO Utils: Successfully started service 'SparkUI' on port 4040.
16/09/19 11:21:31 INFO SparkUI: Started SparkUI at http://192.168.51.143:4040
16/09/19 11:21:31 WARN MetricsSystem: Using default name DAGScheduler for source because spark.app.id is not set.
16/09/19 11:21:31 INFO Executor: Starting executor ID driver on host localhost
16/09/19 11:21:31 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 52520.
16/09/19 11:21:31 INFO NettyBlockTransferService: Server created on 52520
16/09/19 11:21:31 INFO BlockManagerMaster: Trying to register BlockManager
16/09/19 11:21:31 INFO BlockManagerMasterEndpoint: Registering block manager localhost:52520 with 966.9 MB RAM, BlockManagerId(driver, localhost, 52520)
16/09/19 11:21:31 INFO BlockManagerMaster: Registered BlockManager
16/09/19 11:21:31 INFO SparkContext: Invoking stop() from shutdown hook
16/09/19 11:21:32 INFO SparkUI: Stopped Spark web UI at http://192.168.51.143:4040
16/09/19 11:21:32 INFO DAGScheduler: Stopping DAGScheduler
16/09/19 11:21:32 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/09/19 11:21:32 INFO MemoryStore: MemoryStore cleared
16/09/19 11:21:32 INFO BlockManager: BlockManager stopped
16/09/19 11:21:32 INFO BlockManagerMaster: BlockManagerMaster stopped
16/09/19 11:21:32 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/09/19 11:21:32 INFO SparkContext: Successfully stopped SparkContext
16/09/19 11:21:32 INFO ShutdownHookManager: Shutdown hook called
16/09/19 11:21:32 INFO ShutdownHookManager: Deleting directory C:\Users\pc\AppData\Local\Temp\spark-64cccfb4-46c8-4266-92c1-14cfc6aa2cb3 Process finished with exit code 0

  至此,开发环境搭建完毕。

五、打jar包

1、新建一个Scala Object

代码是:

package com.test

import org.apache.spark.{SparkConf, SparkContext}

/**
* Created by pc on 2016/9/20.
*/
object WorldCount { def main(args: Array[String]) {
val dataFile = args(0)
val output = args(1)
val sparkConf = new SparkConf().setAppName("WorldCount")
val sparkContext = new SparkContext(sparkConf)
val lines = sparkContext.textFile(dataFile)
val counts = lines.flatMap(_.split(",")).map(s => (s,1)).reduceByKey((a,b) => a+b)
counts.saveAsTextFile(output)
sparkContext.stop()
}
}

 

2、  File -》Project Structure

3、点击ok

可以设置jar包输出目录:

4、build Artifact

5、运行:

把测试文件放到HDFS的/test/ 目录下,提交:

spark-submit --class com.test.WorldCount --master spark://192.168.18.151:7077 sparktest.jar /test/data.txt /test/test-01

6、如果出现以下错误

Exception in thread "main" java.lang.SecurityException: Invalid signature file digest for Manifest main attributes
at sun.security.util.SignatureFileVerifier.processImpl(SignatureFileVerifier.java:240)
at sun.security.util.SignatureFileVerifier.process(SignatureFileVerifier.java:193)
at java.util.jar.JarVerifier.processEntry(JarVerifier.java:305)
at java.util.jar.JarVerifier.update(JarVerifier.java:216)
at java.util.jar.JarFile.initializeVerifier(JarFile.java:345)
at java.util.jar.JarFile.getInputStream(JarFile.java:412)
at sun.misc.JarIndex.getJarIndex(JarIndex.java:137)
at sun.misc.URLClassPath$JarLoader$1.run(URLClassPath.java:674)
at sun.misc.URLClassPath$JarLoader$1.run(URLClassPath.java:666)
at java.security.AccessController.doPrivileged(Native Method)
at sun.misc.URLClassPath$JarLoader.ensureOpen(URLClassPath.java:665)
at sun.misc.URLClassPath$JarLoader.<init>(URLClassPath.java:638)
at sun.misc.URLClassPath$3.run(URLClassPath.java:366)
at sun.misc.URLClassPath$3.run(URLClassPath.java:356)
at java.security.AccessController.doPrivileged(Native Method)
at sun.misc.URLClassPath.getLoader(URLClassPath.java:355)
at sun.misc.URLClassPath.getLoader(URLClassPath.java:332)
at sun.misc.URLClassPath.getResource(URLClassPath.java:198)
at java.net.URLClassLoader$1.run(URLClassLoader.java:358)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:270)
at org.apache.spark.util.Utils$.classForName(Utils.scala:173)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:641)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

  就使用WinRAR打开jar包, 删除META-INF目录下的除了mainfest.mf,.rsa及maven目录以外的其他所有文件

Spark Idea Maven 开发环境搭建的更多相关文章

  1. Spark2.2,IDEA,Maven开发环境搭建附测试

    前言: 停滞了一段时间,现在要沉下心来学习点东西,出点货了. 本文没有JavaJDK ScalaSDK和 IDEA的安装过程,网络上会有很多文章介绍这个内容,因此这里就不再赘述. 一.在IDEA上安装 ...

  2. spark Intellij IDEA开发环境搭建

    (1)创建Scala项目 File->new->Project,如下图 选择Scala 然后next 其中Project SDK指定安装的JDK,Scala SDK指定安装的Scala(这 ...

  3. Scala java maven开发环境搭建

        基于maven配置的scala开发环境,首先需要安装 idea 的scala plugin.然后就可以使用maven编译scala程序了.一般情况下都是java scala的混合,所以src下 ...

  4. Eclipse+maven开发环境搭建

    版本描述: Eclipse 3.2.2 Maven 2.0.7 Jdk 1.5以上,本例是在jdk1.50版本测试通过 Maven配置过程 Maven官方下载地址:http://www.apache. ...

  5. Maven开发环境搭建

    配置Maven流程: 1.下载Maven,官网:http://maven.apache.org/ 2.安装到本地: 1 ).解压apache-maven-x.x.x-bin.zip文件 2 ).配置M ...

  6. Spark+ECLIPSE+JAVA+MAVEN windows开发环境搭建及入门实例【附详细代码】

    http://blog.csdn.net/xiefu5hh/article/details/51707529 Spark+ECLIPSE+JAVA+MAVEN windows开发环境搭建及入门实例[附 ...

  7. spark JAVA 开发环境搭建及远程调试

    spark JAVA 开发环境搭建及远程调试 以后要在项目中使用Spark 用户昵称文本做一下聚类分析,找出一些违规的昵称信息.以前折腾过Hadoop,于是看了下Spark官网的文档以及 github ...

  8. Centos 基础开发环境搭建之Maven私服nexus

    hmaster 安装nexus及启动方式 /usr/local/nexus-2.6.3-01/bin ./nexus status Centos 基础开发环境搭建之Maven私服nexus . 软件  ...

  9. Hadoop项目开发环境搭建(Eclipse\MyEclipse + Maven)

    写在前面的话 可详细参考,一定得去看 HBase 开发环境搭建(Eclipse\MyEclipse + Maven) Zookeeper项目开发环境搭建(Eclipse\MyEclipse + Mav ...

随机推荐

  1. linux grep 命令

    Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来.grep全称是Global Regular Expression Print,表示全局正则表达 ...

  2. A - Humble Numbers

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Pract ...

  3. Android应用程序“R文件”消失

    其实Android自己维护这一个 public final class R类主要是跟新资源文件,这个R.java无需我们自己去修改,如果你不了解千万不要去修改它,它定义的每个资源值都是唯一的,不会和系 ...

  4. Maven生命周期详解

    来源:http://juvenshun.iteye.com/blog/213959 Maven强大的一个重要的原因是它有一个十分完善的生命周期模型(lifecycle),这个生命周期可以从两方面来理解 ...

  5. 全面理解面向对象的 JavaScript (share)

     以下分享自:  http://www.ibm.com/developerworks/cn/web/1304_zengyz_jsoo/   简介: JavaScript 函数式脚本语言特性以及其看似随 ...

  6. Linux分区介绍

    分区的大小主要取决于个人的选择,以下内容可能会有一定帮助:/boot - 200 MB 实际需求大约 100 MB,如果有多个内核/启动镜像同时存在,建议分配 200 或者 300 MB./ - 15 ...

  7. SQL数据库的十条命令

    --(1)查询每个总学时数 select GradeId,SUM(classHour) from subject group by GradeId order by(SUM(classHour)) - ...

  8. 代理模式 (Proxy Pattern)

    代理模式的定义:为其他对象提供一种代理以控制对这个对象的访问.而对一个对象进行访问控制的一个原因是为了只有在我们确实需要这个对象时才对它进行创建和初始化.在某些情况下,一个对象不适合或者不能直接引用另 ...

  9. 10-Java 网络通信

    (一) Java中的XML操作 1.XML数据格式简介: (1)XML,即可扩展标记语言(Extensible Markup Language),标准通用标记语言的子集,一种用于标记电子文件使其具有结 ...

  10. Python Mysql 篇

    Python 操作 Mysql 模块的安装 linux: yum install MySQL-python window: http://files.cnblogs.com/files/wupeiqi ...