【BZOJ】3028: 食物
http://www.lydsy.com/JudgeOnline/problem.php?id=3028
题意:
每种食物的限制如下:
汉堡:偶数个;
可乐:0个或1个
鸡腿:0个,1个或2个
蜜桃:奇数个
鸡块:4的倍数个
包子:0个,1个,2个或3个
土豆:不超过一个。
面包:3的倍数个
问带$n$个物品的方案数(n<=10^500)
#include <bits/stdc++.h>
using namespace std; int main() {
int n=0; char c;
while(cin >> c) ((n*=10)+=c-'0')%=10007;
cout << ((n*(n+1)%10007)*(n+2)%10007)*1668%10007 << endl;
return 0;
}
学习了一下各种姿势= =
首先母函数易得= =
$$
\begin{align}
汉堡 & = x^0 + x^2 + x^4 + \cdots = \frac{1}{1-x^2} \\
蜜桃 & = x^1 + x^3 + x^5 + \cdots = \frac{x}{1-x^2} \\
面包 & = x^0 + x^3 + x^6 + \cdots = \frac{1}{1-x^3} \\
鸡块 & = x^0 + x^4 + x^8 + \cdots = \frac{1}{1-x^4} \\
土豆 & = x^0 + x^1 = \frac{1-x^2}{1-x} \\
可乐 & = x^0 + x^1 = \frac{1-x^2}{1-x} \\
鸡腿 & = x^0 + x^1 + x^2 = \frac{1-x^3}{1-x} \\
包子 & = x^0 + x^1 + x^2 + x^3 = \frac{1-x^4}{1-x} \\
\end{align}
$$
乘起来就是 $ f(x) = \frac{x}{(1-x)^4} $
根据泰勒展开$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$
发现
$$ f(x) = x \left( \frac{1}{1-x} \right)^4 = x \left( \sum_{i=0}^{\infty} x^i \right)^4 $$
而$\left( \sum_{i=0}^{\infty} x^i \right)^n$中的$x$的$a$次项的系数是$\binom{a+n-1}{n-1}$
证明:
对于系数$a$,由于有$n$个多项式相乘,我们就设$a$由$n$个非负数的和。而由于有$0$的出现,我们将式子两边加上$n$,这样就能没负数啦= =。将这些数全部变成$1$的和,即$a+n = 1 + 1 + 1 + \cdots +1$,假设有$n-1$个竖线插在这$a+n$个$1$之间,即有$a+n-1$个位置,那么显然$\binom{a+n-1}{n-1}$就是答案= =(即分割成$n$份。
所以答案就是$f(x)$的$x$的$n$次系数,即$\binom{n+2}{3}$
【BZOJ】3028: 食物的更多相关文章
- bzoj 3028: 食物 -- 母函数
3028: 食物 Time Limit: 3 Sec Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他 ...
- BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]
3028: 食物 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 497 Solved: 331[Submit][Status][Discuss] De ...
- BZOJ 3028 食物 (生成函数+数学题)
题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...
- BZOJ 3028 食物 生成函数
Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这 ...
- bzoj 3028 食物——生成函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的 ...
- BZOJ 3028: 食物
\(\color{#0066ff}{ 题目描述 }\) 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮 ...
- bzoj 3028 食物 —— 生成函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 式子很好推,详细可以看这篇博客:https://blog.csdn.net/wu_to ...
- BZOJ 3028 食物 ——生成函数
把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方 ...
- bzoj 3028: 食物【生成函数】
承德汉堡:\( 1+x^2+x^4+...=\frac{1}{1-x^2} \) 可乐:\(1+x \) 鸡腿:\( 1+x+x^2=\frac{x^3-1}{x-1} \) 蜜桃多:\( x+x^3 ...
- bzoj 3028: 食物 生成函数_麦克劳林展开
不管怎么求似乎都不太好求,我们试试生成函数.这个东西好神奇.生成函数的精华是两个生成函数相乘,对应 $x^{i}$ 前的系数表示取 $i$ 个时的方案数. 有时候,我们会将函数按等比数列求和公式进行压 ...
随机推荐
- Dubbo集成Spring与Zookeeper实例
>>Dubbo最佳实践 使用Dubbo结合Zookeeper和Spring,是使用比较广泛的一种组合,下面参考官方文档,做个简单的示例,一步步搭建一个使用dubbo结合Zookeeper和 ...
- Vs 控件错位 右侧资源管理器文件夹点击也不管用,显示异常
问题:显卡驱动异常. 缘由:驱动精灵万能显卡安装系统 解决方案:根据笔记本型号去官网下载适配显卡驱动.
- GPT vs MBR 分区 ,,, Legacy BIOS vs UEFI BIOS
MBR与GPT两种磁盘分区格式的区别 http://itoedr.blog.163.com/blog/static/120284297201378114053240 GPT Partition Tab ...
- php重修
阅读顺序: http://www.laruence.com/2008/08/11/147.html 深入浅出php http://www.laruence.com/2008/06/18/221.ht ...
- BZOJ1004 [HNOI2008]Cards(Polya计数)
枚举每个置换,求在每个置换下着色不变的方法数,先求出每个循环的大小,再动态规划求得使用给定的颜色时对应的方法数. dp[i][j][k]表示处理到当前圈时R,B,G使用量为i,j,k时的方法数,背包思 ...
- 直传文件到Azure Storage的Blob服务中
(此文章同时发表在本人微信公众号“dotNET每日精华文章”,欢迎右边二维码来关注.) 题记:为了庆祝获得微信公众号赞赏功能,忙里抽闲分享一下最近工作的一点心得:如何直接从浏览器中上传文件到Azure ...
- 初识RPC协议
什么是rpc框架 先回答第一个问题:什么是RPC框架? 如果用一句话概括RPC就是:远程调用框架(Remote Procedure Call) 那什么是远程调用? 通常我们调用一个php中的方法,比如 ...
- .net Session 详解
(一) 描述当用户在 Web 应用程序中导航 ASP.NET 页时,ASP.NET 会话状态使您能够存储和检索用户的值.HTTP 是一种无状态协议.这意味着 Web 服务器会将针对页面的每个 HTTP ...
- HDU 5869 Different GCD Subarray Query 离线+树状数组
Different GCD Subarray Query Problem Description This is a simple problem. The teacher gives Bob a ...
- loj 1038(dp求期望)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25915 题意:求一个数不断地除以他的因子,直到变成1的时候 除的次 ...