【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况。正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合、确保泛化能力的一种有效方式。如果将模型原始的假设空间比作“天空”,那么天空飞翔的“鸟”就是模型可能收敛到的一个个最优解。在施加了模型正则化后,就好比将原假设空间(“天空”)缩小到一定的空间范围(“笼子”),这样一来,可能得到的最优解能搜索的假设空间也变得相对有限。有限空间自然对应复杂度不太高的模型,也自然对应了有限的模型表达能力。这就是“正则化有效防止模型过拟合的”一种直观解析。

L2正则化
在深度学习中,用的比较多的正则化技术是L2正则化,其形式是在原先的损失函数后边再加多一项:\(\frac{1}{2}\lambda\theta_{i}^2\),那加上L2正则项的损失函数就可以表示为:\(L(\theta)=L(\theta)+\lambda\sum_{i}^{n}\theta_{i}^2\),其中\(\theta\)就是网络层的待学习的参数,\(\lambda\)则控制正则项的大小,较大的取值将较大程度约束模型复杂度,反之亦然。
L2约束通常对稀疏的有尖峰的权重向量施加大的惩罚,而偏好于均匀的参数。这样的效果是鼓励神经单元利用上层的所有输入,而不是部分输入。所以L2正则项加入之后,权重的绝对值大小就会整体倾向于减少,尤其不会出现特别大的值(比如噪声),即网络偏向于学习比较小的权重。所以L2正则化在深度学习中还有个名字叫做“权重衰减”(weight decay),也有一种理解这种衰减是对权值的一种惩罚,所以有些书里把L2正则化的这一项叫做惩罚项(penalty)。
我们通过一个例子形象理解一下L2正则化的作用,考虑一个只有两个参数\(w_{1}\)和\(w_{2}\)的模型,其损失函数曲面如下图所示。从a可以看出,最小值所在是一条线,整个曲面看起来就像是一个山脊。那么这样的山脊曲面就会对应无数个参数组合,单纯使用梯度下降法难以得到确定解。但是这样的目标函数若加上一项\(0.1\times(w_{1}^2+w_{2}^2)\),则曲面就会变成b图的曲面,最小值所在的位置就会从一条山岭变成一个山谷了,此时我们搜索该目标函数的最小值就比先前容易了,所以L2正则化在机器学习中也叫做“岭回归”(ridge regression)。

L1正则化
L1正则化的形式是:\(\lambda|\theta_{i}|\),与目标函数结合后的形式就是:\(L(\theta)=L(\theta)+\lambda\sum_{i}^{n}|\theta_{i}|\)。需注意,L1 正则化除了和L2正则化一样可以约束数量级外,L1正则化还能起到使参数更加稀疏的作用,稀疏化的结果使优化后的参数一部分为0,另一部分为非零实值。非零实值的那部分参数可起到选择重要参数或特征维度的作用,同时可起到去除噪声的效果。此外,L1正则化和L2正则化可以联合使用:\(\lambda_{1}|\theta_{i}|+\frac{1}{2}\lambda_{2}\theta_{i}^2\)。这种形式也被称为“Elastic网络正则化”。
正则化对偏导的影响
对于L2正则化:\(C=C_{0}+\frac{\lambda}{2n}\sum_{i}\omega_{i}^2\),相比于未加正则化之前,权重的偏导多了一项\(\frac{\lambda}{n}\omega\),偏置的偏导没变化,那么在梯度下降时\(\omega\)的更新变为:

可以看出\(\omega\)的系数使得权重下降加速,因此L2正则也称weight decay(caffe中损失层的weight_decay参数与此有关)。对于随机梯度下降(对一个mini-batch中的所有x的偏导求平均):

对于L1正则化:\(C=C_{0}+\frac{\lambda}{n}\sum_{i}|\omega_{i}|\),梯度下降的更新为:

符号函数在\(\omega\)大于0时为1,小于0时为-1,在\(\omega=0\)时\(|\omega|\)没有导数,因此可令sgn(0)=0,在0处不使用L1正则化。
相比于L2,有所不同:
- L1减少的是一个常量,L2减少的是权重的固定比例
- 孰快孰慢取决于权重本身的大小,权重刚大时可能L2快,较小时L1快
实践中L2正则化通常优于L1正则化。
【深度学习】L1正则化和L2正则化的更多相关文章
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- L1正则化与L2正则化的理解
1. 为什么要使用正则化 我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...
- 深度学习中,使用regularization正则化(weight_decay)的好处,loss=nan
刚开始训练一个模型,自己就直接用了,而且感觉训练的数据量也挺大的,因此就没有使用正则化, 可能用的少的原因,我也就不用了,后面,训练到一定程度,accuracy不上升,loss不下降,老是出现loss ...
- L1和L2正则化(转载)
[深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...
- Pytorch_第八篇_深度学习 (DeepLearning) 基础 [4]---欠拟合、过拟合与正则化
深度学习 (DeepLearning) 基础 [4]---欠拟合.过拟合与正则化 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [3]---梯度下降法" ...
- 深入理解L1、L2正则化
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...
- L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
- L1、L2正则化详解
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
随机推荐
- [国嵌攻略][066][ARP协议实现]
以太网通讯 在计算机网络中,数据发送的过程就是把数据按照各层协议层层封装的过程.在这个过程中,最终要使用的协议通常是以太网协议(数据链路层协议). 以太网包格式 目的MAC地址:接收者的物理地址(6字 ...
- Sql Server——约束
约束是什么: 每个人都在网站或者APP上注册过账号,在注册账号时会限制用户名.密码等格式,如果格式不对就不能注册.在数据库中我们可以通过约束来进行限制,超过约束范围的数据就不能写入. 约束的种类: 主 ...
- C#采用rabbitMQ搭建分布式日志系统
网上对于java有很多开源的组件可以搭建分布式日志系统,我参考一些组件自己开发一套简单的分布式日志系 全部使用采用.NET进行开发,所用技术:MVC.EF.RabbitMq.MySql.Autofac ...
- JavaScript八张思维导图—Date用法
JS基本概念 JS操作符 JS基本语句 JS数组用法 Date用法 JS字符串用法 JS编程风格 JS编程实践 不知不觉做前端已经五年多了,无论是从最初的jQuery还是现在火热的Angular,Vu ...
- CSS3技巧巧妙使用:not(:last-of-type)简化你的css代码
终于找到了一个好方法,使用:not(:last-of-type)简单方便,再也不要麻烦的单独使用:last-of-type了,不错! 应用场景:平时我们的列表一般都会有分割线,但是最后一个列表没有分割 ...
- API接口签名验证2
http://www.jianshu.com/p/d47da77b6419 系统从外部获取数据时,通常采用API接口调用的方式来实现.请求方和�接口提供方之间的通信过程,有这几个问题需要考虑: 1.请 ...
- Thinkphp+Nginx(PHPstudy)下报的404错误,403错误解决
最近一个TP5的项目说放到Nginx下测试看看,下载个 PHPstudy,放到WWW下,配置好域名,直接给个报个404: 解决方法: 1.先在phpstudy下配置好域名目录指向项目下的public下 ...
- drawpoly()函数的用法
画多边形的函数drawpoly() 用当前绘图色.线型及线宽,画一个给定若干点所定义的多边形.第一个参数,是多边形的顶点数第二个参数,是该数组中是多边形所有顶点(x,y)坐标值,即一系列整数对
- CCF系列之最大的矩形(201312-3)
试题名称: 最大的矩形 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi.这n个矩 ...
- EL表达式遍历Map集合
<% Map<String,String> map2 = new HashMap(); map2.put("a","hello world") ...