【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况。正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合、确保泛化能力的一种有效方式。如果将模型原始的假设空间比作“天空”,那么天空飞翔的“鸟”就是模型可能收敛到的一个个最优解。在施加了模型正则化后,就好比将原假设空间(“天空”)缩小到一定的空间范围(“笼子”),这样一来,可能得到的最优解能搜索的假设空间也变得相对有限。有限空间自然对应复杂度不太高的模型,也自然对应了有限的模型表达能力。这就是“正则化有效防止模型过拟合的”一种直观解析。
L2正则化
在深度学习中,用的比较多的正则化技术是L2正则化,其形式是在原先的损失函数后边再加多一项:\(\frac{1}{2}\lambda\theta_{i}^2\),那加上L2正则项的损失函数就可以表示为:\(L(\theta)=L(\theta)+\lambda\sum_{i}^{n}\theta_{i}^2\),其中\(\theta\)就是网络层的待学习的参数,\(\lambda\)则控制正则项的大小,较大的取值将较大程度约束模型复杂度,反之亦然。
L2约束通常对稀疏的有尖峰的权重向量施加大的惩罚,而偏好于均匀的参数。这样的效果是鼓励神经单元利用上层的所有输入,而不是部分输入。所以L2正则项加入之后,权重的绝对值大小就会整体倾向于减少,尤其不会出现特别大的值(比如噪声),即网络偏向于学习比较小的权重。所以L2正则化在深度学习中还有个名字叫做“权重衰减”(weight decay),也有一种理解这种衰减是对权值的一种惩罚,所以有些书里把L2正则化的这一项叫做惩罚项(penalty)。
我们通过一个例子形象理解一下L2正则化的作用,考虑一个只有两个参数\(w_{1}\)和\(w_{2}\)的模型,其损失函数曲面如下图所示。从a可以看出,最小值所在是一条线,整个曲面看起来就像是一个山脊。那么这样的山脊曲面就会对应无数个参数组合,单纯使用梯度下降法难以得到确定解。但是这样的目标函数若加上一项\(0.1\times(w_{1}^2+w_{2}^2)\),则曲面就会变成b图的曲面,最小值所在的位置就会从一条山岭变成一个山谷了,此时我们搜索该目标函数的最小值就比先前容易了,所以L2正则化在机器学习中也叫做“岭回归”(ridge regression)。
L1正则化
L1正则化的形式是:\(\lambda|\theta_{i}|\),与目标函数结合后的形式就是:\(L(\theta)=L(\theta)+\lambda\sum_{i}^{n}|\theta_{i}|\)。需注意,L1 正则化除了和L2正则化一样可以约束数量级外,L1正则化还能起到使参数更加稀疏的作用,稀疏化的结果使优化后的参数一部分为0,另一部分为非零实值。非零实值的那部分参数可起到选择重要参数或特征维度的作用,同时可起到去除噪声的效果。此外,L1正则化和L2正则化可以联合使用:\(\lambda_{1}|\theta_{i}|+\frac{1}{2}\lambda_{2}\theta_{i}^2\)。这种形式也被称为“Elastic网络正则化”。
正则化对偏导的影响
对于L2正则化:\(C=C_{0}+\frac{\lambda}{2n}\sum_{i}\omega_{i}^2\),相比于未加正则化之前,权重的偏导多了一项\(\frac{\lambda}{n}\omega\),偏置的偏导没变化,那么在梯度下降时\(\omega\)的更新变为:
可以看出\(\omega\)的系数使得权重下降加速,因此L2正则也称weight decay(caffe中损失层的weight_decay参数与此有关)。对于随机梯度下降(对一个mini-batch中的所有x的偏导求平均):
对于L1正则化:\(C=C_{0}+\frac{\lambda}{n}\sum_{i}|\omega_{i}|\),梯度下降的更新为:
符号函数在\(\omega\)大于0时为1,小于0时为-1,在\(\omega=0\)时\(|\omega|\)没有导数,因此可令sgn(0)=0,在0处不使用L1正则化。
相比于L2,有所不同:
- L1减少的是一个常量,L2减少的是权重的固定比例
- 孰快孰慢取决于权重本身的大小,权重刚大时可能L2快,较小时L1快
实践中L2正则化通常优于L1正则化。
【深度学习】L1正则化和L2正则化的更多相关文章
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- L1正则化与L2正则化的理解
1. 为什么要使用正则化 我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...
- 深度学习中,使用regularization正则化(weight_decay)的好处,loss=nan
刚开始训练一个模型,自己就直接用了,而且感觉训练的数据量也挺大的,因此就没有使用正则化, 可能用的少的原因,我也就不用了,后面,训练到一定程度,accuracy不上升,loss不下降,老是出现loss ...
- L1和L2正则化(转载)
[深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...
- Pytorch_第八篇_深度学习 (DeepLearning) 基础 [4]---欠拟合、过拟合与正则化
深度学习 (DeepLearning) 基础 [4]---欠拟合.过拟合与正则化 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [3]---梯度下降法" ...
- 深入理解L1、L2正则化
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...
- L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
- L1、L2正则化详解
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
随机推荐
- App Doc View Frame中指针的获取
// App中获取其它三项指针 void CSDIApp::OnApp() { // App // Doc CDocument *pDoc = ((CFrameWndEx *)m_pMainWnd)- ...
- PHP开发api接口安全验证
php的api接口 在实际工作中,使用PHP写api接口是经常做的,PHP写好接口后,前台就可以通过链接获取接口提供的数据,而返回的数据一般分为两种情况,xml和json,在这个过程中,服务器并不知道 ...
- 使用phpMyAdmin批量修改Mysql数据表前缀的方法
多个网站共用一个Mysql数据库时,为使数据库管理不混乱,一般采用不同的网站使用不同前缀名的方式进行区分.而如何批量修改已有数据库的前缀名呢?全部导出修改后再导入?还是一个表一个表的修改?今天我要介绍 ...
- DEDECMS 留言薄模块的使用方法
一.留言薄的安装 留言薄的安装过程和其他插件一样,首先我们进入后台模块管理列表,点击其对应的"安装": 以上步骤,我们完成了留言薄插件的安装. 二.留言薄的卸载 留言薄的卸载,同样 ...
- python_如何拆分含有多种分隔符的字符串?
案例: 把某个字符串依据分隔符拆分,该字符包含不同的多种分隔符,如下 s = '12;;7.osjd;.jshdjdknx+' 其中 ; . + 是分隔符 有哪些解决方案? 方法1:通过str.spl ...
- [Qt Quick] qmlscene工具的使用
qmlscene是Qt 5提供的一个查看qml文件效果的工具.特点是不需要编译应用程序. qmlscene = qml + scene (场景) qmlscene.exe位于Qt的安装目录下 (类似/ ...
- Linxu指令--date,cal
在linux环境中,不管是编程还是其他维护,时间是必不可少的,也经常会用到时间的运算,熟练运用date命令来表示自己想要表示的时间,肯定可以给自己的工作带来诸多方便. 1.命令格式: date [参数 ...
- 配置struts2拦截器
<!-- 配置拦截器 --> <interceptors> <!-- 声明拦截器 --> <inte ...
- atom中开发vue常用插件
atom: 开发利器,界面友好,配色出色,好用的插件众多. language-vue: 这个是首推,因为它就是为vue而生的呀,支持很多vue里的提示.在空的vue页面敲tem,vue模板的提示就自动 ...
- 【转】高斯-克吕格投影与UTM投影异同
高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配 ...