Spark中的调度模式主要有两种:FIFO和FAIR。默认情况下Spark的调度模式是FIFO(先进先出),谁先提交谁先执行,后面的任务需要等待前面的任务执行。而FAIR(公平调度)模式支持在调度池中为任务进行分组,不同的调度池权重不同,任务可以按照权重来决定执行顺序。对这两种调度模式的具体实现,接下来会根据spark-1.6.0的源码来进行详细的分析。使用哪种调度器由参数spark.scheduler.mode来设置,可选的参数有FAIR和FIFO,默认是FIFO。

一、源码入口

  在Scheduler模块中,当Stage划分好,然后提交Task的过程中,会进入TaskSchedulerImpl#submitTasks方法。

schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)   //目前支持FIFO和FAIR两种调度策略

  在上面代码中有一个schedulableBuilder对象,这个对象在TaskSchedulerImpl类中的定义及实现可以参考下面这段源代码:

var schedulableBuilder: SchedulableBuilder = null
...
def initialize(backend: SchedulerBackend) {
this.backend = backend
// temporarily set rootPool name to empty
rootPool = new Pool("", schedulingMode, 0, 0)
schedulableBuilder = {
schedulingMode match {
case SchedulingMode.FIFO =>
new FIFOSchedulableBuilder(rootPool) //rootPool包含了一组TaskSetManager
case SchedulingMode.FAIR =>
new FairSchedulableBuilder(rootPool, conf) //rootPool包含了一组Pool树,这棵树的叶子节点都是TaskSetManager
}
}
schedulableBuilder.buildPools() //在FIFO中的实现是空
}

  根据用户配置的SchedulingMode决定是生成FIFOSchedulableBuilder还是生成FairSchedulableBuilder类型的schedulableBuilder对象。

  

  在生成schedulableBuilder后,调用其buildPools方法生成调度池。

  调度模式由配置参数spark.scheduler.mode(默认值为FIFO)来确定。

  两种模式的调度逻辑图如下:

  

二、FIFOSchedulableBuilder

  FIFO的rootPool包含一组TaskSetManager。从上面的类继承图中看出在FIFOSchedulableBuilder中有两个方法:

1、buildPools

  实现为空

override def buildPools() {
// nothing
}

所以,对于FIFO模式,获取到schedulableBuilder对象后,在调用buildPools方法后,不做任何操作。

2、addTaskSetManager

  该方法将TaskSetManager装载到rootPool中。直接调用的方法是Pool#addSchedulable()。

  override def addTaskSetManager(manager: Schedulable, properties: Properties) {
rootPool.addSchedulable(manager)
}

Pool#addSchedulable()方法:

val schedulableQueue = new ConcurrentLinkedQueue[Schedulable]
...
override def addSchedulable(schedulable: Schedulable) {
require(schedulable != null)
schedulableQueue.add(schedulable)
schedulableNameToSchedulable.put(schedulable.name, schedulable)
schedulable.parent = this
}

将该TaskSetManager加入到调度队列schedulableQueue中。

三、FairSchedulableBuilder

  FAIR的rootPool中包含一组Pool,在Pool中包含了TaskSetManager。

1、buildPools

  在该方法中,会读取配置文件,按照配置文件中的配置参数调用buildFairSchedulerPool生成配置的调度池,以及调用buildDefaultPool生成默认调度池。

  默认情况下FAIR模式的配置文件是位于SPARK_HOME/conf/fairscheduler.xml文件,也可以通过参数spark.scheduler.allocation.file设置用户自定义配置文件。

spark中提供的fairscheduler.xml模板如下所示:

<allocations>
<pool name="production">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
<minShare>2</minShare>
</pool>
<pool name="test">
<schedulingMode>FIFO</schedulingMode>
<weight>2</weight>
<minShare>3</minShare>
</pool>
</allocations>

参数含义:

(1)name: 该调度池的名称,可根据该参数使用指定pool,入sc.setLocalProperty("spark.scheduler.pool", "test")

(2)weight: 该调度池的权重,各调度池根据该参数分配系统资源。每个调度池得到的资源数为weight / sum(weight),weight为2的分配到的资源为weight为1的两倍。

(3)minShare: 该调度池需要的最小资源数(CPU核数)。fair调度器首先会尝试为每个调度池分配最少minShare资源,然后剩余资源才会按照weight大小继续分配。

(4)schedulingMode: 该调度池内的调度模式。

2、buildFairSchedulerPool

  从上面的配置文件可以看到,每一个调度池有一个name属性指定名字,然后在该pool中可以设置其schedulingMode(可为空,默认为FIFO), weight(可为空,默认值是1), 以及minShare(可为空,默认值是0)参数。然后使用这些参数生成一个Pool对象,把该pool对象放入rootPool中。入下所示:

val pool = new Pool(poolName, schedulingMode, minShare, weight)
rootPool.addSchedulable(pool)

3、buildDefaultPool

  如果如果配置文件中没有设置一个name为default的pool,系统才会自动生成一个使用默认参数生成的pool对象。各项参数的默认值在buildFairSchedulerPool中有提到。

4、addTaskSetManager

  这一段逻辑中是把配置文件中的pool,或者default pool放入rootPool中,然后把TaskSetManager存入rootPool对应的子pool。

  override def addTaskSetManager(manager: Schedulable, properties: Properties) {
var poolName = DEFAULT_POOL_NAME
var parentPool = rootPool.getSchedulableByName(poolName)
if (properties != null) {
poolName = properties.getProperty(FAIR_SCHEDULER_PROPERTIES, DEFAULT_POOL_NAME)
parentPool = rootPool.getSchedulableByName(poolName)
if (parentPool == null) {
// we will create a new pool that user has configured in app
// instead of being defined in xml file
parentPool = new Pool(poolName, DEFAULT_SCHEDULING_MODE,
DEFAULT_MINIMUM_SHARE, DEFAULT_WEIGHT)
rootPool.addSchedulable(parentPool)
logInfo("Created pool %s, schedulingMode: %s, minShare: %d, weight: %d".format(
poolName, DEFAULT_SCHEDULING_MODE, DEFAULT_MINIMUM_SHARE, DEFAULT_WEIGHT))
}
}
parentPool.addSchedulable(manager)
logInfo("Added task set " + manager.name + " tasks to pool " + poolName)
}

5、FAIR调度池使用方法

  在Spark-1.6.1官方文档中写道:

如果不加设置,jobs会提交到default调度池中。由于调度池的使用是Thread级别的,只能通过具体的SparkContext来设置local属性(即无法在配置文件中通过参数spark.scheduler.pool来设置,因为配置文件中的参数会被加载到SparkConf对象中)。所以需要使用指定调度池的话,需要在具体代码中通过SparkContext对象sc来按照如下方法进行设置:

sc.setLocalProperty("spark.scheduler.pool", "test")

设置该参数后,在该thread中提交的所有job都会提交到test Pool中。

如果接下来不再需要使用到该test调度池,

sc.setLocalProperty("spark.scheduler.pool", null)

四、FIFO和FAIR的调度顺序

  这里必须提到的一个类是上面提到的Pool,在这个类中实现了不同调度模式的调度算法。

  var taskSetSchedulingAlgorithm: SchedulingAlgorithm = {
schedulingMode match {
case SchedulingMode.FAIR =>
new FairSchedulingAlgorithm()
case SchedulingMode.FIFO =>
new FIFOSchedulingAlgorithm()
}
}

FIFO模式的算法类是FIFOSchedulingAlgorithm,FAIR模式的算法实现类是FairSchedulingAlgorithm。

  接下来的两节中comparator方法传入参数Schedulable类型是一个trait,具体实现主要有两个:1,Pool;2,TaskSetManager。与最前面那个调度模式的逻辑图相对应。

1、FIFO模式的调度算法FIFOSchedulingAlgorithm

  在这个类里面,主要逻辑是一个comparator方法。

  override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val priority1 = s1.priority //实际上是Job ID
val priority2 = s2.priority
var res = math.signum(priority1 - priority2)
if (res == 0) { //如果Job ID相同,就比较Stage ID
val stageId1 = s1.stageId
val stageId2 = s2.stageId
res = math.signum(stageId1 - stageId2)
}
if (res < 0) {
true
} else {
false
}
}

如果有两个调度任务s1和s2,首先获得两个任务的priority,在FIFO中该优先级实际上是Job ID。首先比较两个任务的Job ID,如果priority1比priority2小,那么返回true,表示s1的优先级比s2的高。我们知道Job ID是顺序生成的,先生成的Job ID比较小,所以先提交的job肯定比后提交的job先执行。但是如果是同一个job的不同任务,接下来就比较各自的Stage ID,类似于比较Job ID,Stage ID小的优先级高。

2、FAIR模式的调度算法FairSchedulingAlgorithm

  这个类中的comparator方法源代码如下:

  override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val minShare1 = s1.minShare //在这里share理解成份额,即每个调度池要求的最少cpu核数
val minShare2 = s2.minShare
val runningTasks1 = s1.runningTasks // 该Pool或者TaskSetManager中正在运行的任务数
val runningTasks2 = s2.runningTasks
val s1Needy = runningTasks1 < minShare1 // 如果正在运行任务数比该调度池最小cpu核数要小
val s2Needy = runningTasks2 < minShare2
val minShareRatio1 = runningTasks1.toDouble / math.max(minShare1, 1.0).toDouble
val minShareRatio2 = runningTasks2.toDouble / math.max(minShare2, 1.0).toDouble
val taskToWeightRatio1 = runningTasks1.toDouble / s1.weight.toDouble
val taskToWeightRatio2 = runningTasks2.toDouble / s2.weight.toDouble
var compare: Int = 0 if (s1Needy && !s2Needy) {
return true
} else if (!s1Needy && s2Needy) {
return false
} else if (s1Needy && s2Needy) {
compare = minShareRatio1.compareTo(minShareRatio2)
} else {
compare = taskToWeightRatio1.compareTo(taskToWeightRatio2)
} if (compare < 0) {
true
} else if (compare > 0) {
false
} else {
s1.name < s2.name
}
}

  minShare对应fairscheduler.xml配置文件中的minShare属性。

(1)如果s1所在Pool或者TaskSetManager中运行状态的task数量比minShare小,s2所在Pool或者TaskSetManager中运行状态的task数量比minShare大,那么s1会优先调度。反之,s2优先调度。

(2)如果s1和s2所在Pool或者TaskSetManager中运行状态的task数量都比各自minShare小,那么minShareRatio小的优先被调度。

minShareRatio是运行状态task数与minShare的比值,即相对来说minShare使用较少的先被调度。

(3)如果minShareRatio相同,那么最后比较各自Pool的名字。

Spark调度模式-FIFO和FAIR的更多相关文章

  1. [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等

    本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...

  2. TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等

    本课主题 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...

  3. 【原】Spark Standalone模式

    Spark Standalone模式 安装Spark Standalone集群 手动启动集群 集群创建脚本 提交应用到集群 创建Spark应用 资源调度及分配 监控与日志 与Hadoop共存 配置网络 ...

  4. Spark运行模式与Standalone模式部署

    上节中简单的介绍了Spark的一些概念还有Spark生态圈的一些情况,这里主要是介绍Spark运行模式与Spark Standalone模式的部署: Spark运行模式 在Spark中存在着多种运行模 ...

  5. Scala进阶之路-Spark本地模式搭建

    Scala进阶之路-Spark本地模式搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Spark简介 1>.Spark的产生背景 传统式的Hadoop缺点主要有以下两 ...

  6. spark运行模式

    一.Spark运行模式 Spark有以下四种运行模式: local:本地单进程模式,用于本地开发测试Spark代码; standalone:分布式集群模式,Master-Worker架构,Master ...

  7. Spark standalone模式的安装(spark-1.6.1-bin-hadoop2.6.tgz)(master、slave1和slave2)

     前期博客  Spark运行模式概述 Spark standalone简介与运行wordcount(master.slave1和slave2) 开篇要明白 (1)spark-env.sh 是环境变量配 ...

  8. 理解Spark运行模式(二)(Yarn Cluster)

    上一篇说到Spark的yarn client运行模式,它与yarn cluster模式的主要区别就是前者Driver是运行在客户端,后者Driver是运行在yarn集群中.yarn client模式一 ...

  9. 大数据学习day18----第三阶段spark01--------0.前言(分布式运算框架的核心思想,MR与Spark的比较,spark可以怎么运行,spark提交到spark集群的方式)1. spark(standalone模式)的安装 2. Spark各个角色的功能 3.SparkShell的使用,spark编程入门(wordcount案例)

    0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而 ...

随机推荐

  1. [测试题]line

    Description Input Output Sample Input 10 49743636 36679 707182 9310618 9814768 2315242 9916077 35233 ...

  2. ●POJ 1509 Glass Beads

    题链: http://poj.org/problem?id=1509 题解: 给出一个字符串,有一个操作:把首字符放到末尾,形成新的串.求任意次操作后,字典序最小的串的首字母在原串中的位置.(这就是最 ...

  3. 2015 多校联赛 ——HDU5305(搜索)

    Friends Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Su ...

  4. 【小小复习·大米饼】

    (一)数位DP模板 ·LIS的数位DP: ·含b进制数个数+数形结合的数位DP ·平衡数的数位DP: (二)网络流问题 ·Edmonds_Karp:(见书)·Dinic(见书)·ISAP(见书)·例题 ...

  5. 阿里云负载均衡SSL证书配置

    阿里云负载均衡SSL证书 转载请注明地址:http://www.cnblogs.com/funnyzpc/p/8908461.html 好久了呢,距上篇博客的这段时间中:考试.搬家.工作赶工.业务考察 ...

  6. Java Servlet 笔记4

    Servlet 客户端 HTTP 请求 当浏览器请求网页时,它会向 Web 服务器发送特定信息,这些信息不能被直接读取,因为这些信息是作为 HTTP 请求的头的一部分进行传输的. 读取 HTTP 头的 ...

  7. js添加key为数字的对象,通过类似于通过访问数组的中括号形式访问对象属性

    var obj={};obj[1] = "mm";obj[2]="nn";console.log(obj[1]); 同var obj={};obj[" ...

  8. json字符串转json对象,json对象转换成java对象

    @RequestMapping(value = "updateInvestorApplyAccountNo", method = RequestMethod.POST) @Resp ...

  9. Mysql索引介绍及常见索引的区别

    关于MySQL索引的好处,如果正确合理设计并且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车.对于没有索引的表,单表查询可能几十万数据就是瓶颈,而通常大型 ...

  10. manjaro备忘录

    updated 2018/4/3 manjaro 使用Linux发行版时需要注意几个方面的问题: 包管理器 包管理器无疑时各家发行版的最大特色之一.软件同时也是一个平台是否能够产生足够的吸引力的来源之 ...