最近在网上查看用MapReduce实现的Kmeans算法,例子是不错,http://blog.csdn.net/jshayzf/article/details/22739063

但注释太少了,而且参数太多,如果新手学习的话不太好理解。所以自己按照个人的理解写了一个简单的例子并添加了详细的注释。

大致的步骤是:

1,Map每读取一条数据就与中心做对比,求出该条记录对应的中心,然后以中心的ID为Key,该条数据为value将数据输出。

2,利用reduce的归并功能将相同的Key归并到一起,集中与该Key对应的数据,再求出这些数据的平均值,输出平均值。

3,对比reduce求出的平均值与原来的中心,如果不相同,这将清空原中心的数据文件,将reduce的结果写到中心文件中。(中心的值存在一个HDFS的文件中)

删掉reduce的输出目录以便下次输出。

继续运行任务。

4,对比reduce求出的平均值与原来的中心,如果相同。则删掉reduce的输出目录,运行一个没有reduce的任务将中心ID与值对应输出。

 package MyKmeans;

 import java.io.IOException;
import java.util.ArrayList; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text; import java.util.Arrays;
import java.util.Iterator; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MapReduce { public static class Map extends Mapper<LongWritable, Text, IntWritable, Text>{ //中心集合
ArrayList<ArrayList<Double>> centers = null;
//用k个中心
int k = 0; //读取中心
protected void setup(Context context) throws IOException,
InterruptedException {
centers = Utils.getCentersFromHDFS(context.getConfiguration().get("centersPath"),false);
k = centers.size();
} /**
* 1.每次读取一条要分类的条记录与中心做对比,归类到对应的中心
* 2.以中心ID为key,中心包含的记录为value输出(例如: 1 0.2 。 1为聚类中心的ID,0.2为靠近聚类中心的某个值)
*/
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
//读取一行数据
ArrayList<Double> fileds = Utils.textToArray(value);
int sizeOfFileds = fileds.size(); double minDistance = 99999999;
int centerIndex = 0; //依次取出k个中心点与当前读取的记录做计算
for(int i=0;i<k;i++){
double currentDistance = 0;
for(int j=0;j<sizeOfFileds;j++){
double centerPoint = Math.abs(centers.get(i).get(j));
double filed = Math.abs(fileds.get(j));
currentDistance += Math.pow((centerPoint - filed) / (centerPoint + filed), 2);
}
//循环找出距离该记录最接近的中心点的ID
if(currentDistance<minDistance){
minDistance = currentDistance;
centerIndex = i;
}
}
//以中心点为Key 将记录原样输出
context.write(new IntWritable(centerIndex+1), value);
} } //利用reduce的归并功能以中心为Key将记录归并到一起
public static class Reduce extends Reducer<IntWritable, Text, Text, Text>{ /**
* 1.Key为聚类中心的ID value为该中心的记录集合
* 2.计数所有记录元素的平均值,求出新的中心
*/
protected void reduce(IntWritable key, Iterable<Text> value,Context context)
throws IOException, InterruptedException {
ArrayList<ArrayList<Double>> filedsList = new ArrayList<ArrayList<Double>>(); //依次读取记录集,每行为一个ArrayList<Double>
for(Iterator<Text> it =value.iterator();it.hasNext();){
ArrayList<Double> tempList = Utils.textToArray(it.next());
filedsList.add(tempList);
} //计算新的中心
//每行的元素个数
int filedSize = filedsList.get(0).size();
double[] avg = new double[filedSize];
for(int i=0;i<filedSize;i++){
//求没列的平均值
double sum = 0;
int size = filedsList.size();
for(int j=0;j<size;j++){
sum += filedsList.get(j).get(i);
}
avg[i] = sum / size;
}
context.write(new Text("") , new Text(Arrays.toString(avg).replace("[", "").replace("]", "")));
} } @SuppressWarnings("deprecation")
public static void run(String centerPath,String dataPath,String newCenterPath,boolean runReduce) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf = new Configuration();
conf.set("centersPath", centerPath); Job job = new Job(conf, "mykmeans");
job.setJarByClass(MapReduce.class); job.setMapperClass(Map.class); job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(Text.class); if(runReduce){
//最后依次输出不许要reduce
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
} FileInputFormat.addInputPath(job, new Path(dataPath)); FileOutputFormat.setOutputPath(job, new Path(newCenterPath)); System.out.println(job.waitForCompletion(true));
} public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {
String centerPath = "hdfs://localhost:9000/input/centers.txt";
String dataPath = "hdfs://localhost:9000/input/wine.txt";
String newCenterPath = "hdfs://localhost:9000/out/kmean"; int count = 0; while(true){
run(centerPath,dataPath,newCenterPath,true);
System.out.println(" 第 " + ++count + " 次计算 ");
if(Utils.compareCenters(centerPath,newCenterPath )){
run(centerPath,dataPath,newCenterPath,false);
break;
}
}
} }
 package MyKmeans;

 import java.io.IOException;
import java.util.ArrayList;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.util.LineReader; public class Utils { //读取中心文件的数据
public static ArrayList<ArrayList<Double>> getCentersFromHDFS(String centersPath,boolean isDirectory) throws IOException{ ArrayList<ArrayList<Double>> result = new ArrayList<ArrayList<Double>>(); Path path = new Path(centersPath); Configuration conf = new Configuration(); FileSystem fileSystem = path.getFileSystem(conf); if(isDirectory){
FileStatus[] listFile = fileSystem.listStatus(path);
for (int i = 0; i < listFile.length; i++) {
result.addAll(getCentersFromHDFS(listFile[i].getPath().toString(),false));
}
return result;
} FSDataInputStream fsis = fileSystem.open(path);
LineReader lineReader = new LineReader(fsis, conf); Text line = new Text(); while(lineReader.readLine(line) > 0){
ArrayList<Double> tempList = textToArray(line);
result.add(tempList);
}
lineReader.close();
return result;
} //删掉文件
public static void deletePath(String pathStr) throws IOException{
Configuration conf = new Configuration();
Path path = new Path(pathStr);
FileSystem hdfs = path.getFileSystem(conf);
hdfs.delete(path ,true);
} public static ArrayList<Double> textToArray(Text text){
ArrayList<Double> list = new ArrayList<Double>();
String[] fileds = text.toString().split(",");
for(int i=0;i<fileds.length;i++){
list.add(Double.parseDouble(fileds[i]));
}
return list;
} public static boolean compareCenters(String centerPath,String newPath) throws IOException{ List<ArrayList<Double>> oldCenters = Utils.getCentersFromHDFS(centerPath,false);
List<ArrayList<Double>> newCenters = Utils.getCentersFromHDFS(newPath,true); int size = oldCenters.size();
int fildSize = oldCenters.get(0).size();
double distance = 0;
for(int i=0;i<size;i++){
for(int j=0;j<fildSize;j++){
double t1 = Math.abs(oldCenters.get(i).get(j));
double t2 = Math.abs(newCenters.get(i).get(j));
distance += Math.pow((t1 - t2) / (t1 + t2), 2);
}
} if(distance == 0.0){
//删掉新的中心文件以便最后依次归类输出
Utils.deletePath(newPath);
return true;
}else{
//先清空中心文件,将新的中心文件复制到中心文件中,再删掉中心文件 Configuration conf = new Configuration();
Path outPath = new Path(centerPath);
FileSystem fileSystem = outPath.getFileSystem(conf); FSDataOutputStream overWrite = fileSystem.create(outPath,true);
overWrite.writeChars("");
overWrite.close(); Path inPath = new Path(newPath);
FileStatus[] listFiles = fileSystem.listStatus(inPath);
for (int i = 0; i < listFiles.length; i++) {
FSDataOutputStream out = fileSystem.create(outPath);
FSDataInputStream in = fileSystem.open(listFiles[i].getPath());
IOUtils.copyBytes(in, out, 4096, true);
}
//删掉新的中心文件以便第二次任务运行输出
Utils.deletePath(newPath);
} return false;
}
}

数据集   http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

运行结果可以与http://blog.csdn.net/jshayzf/article/details/22739063的结果做对比(前提是初始的中心相同)

MapReduce Kmeans聚类算法的更多相关文章

  1. Hadoop平台K-Means聚类算法分布式实现+MapReduce通俗讲解

        Hadoop平台K-Means聚类算法分布式实现+MapReduce通俗讲解 在Hadoop分布式环境下实现K-Means聚类算法的伪代码如下: 输入:参数0--存储样本数据的文本文件inpu ...

  2. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  3. k-means聚类算法python实现

    K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...

  4. K-Means 聚类算法原理分析与代码实现

    前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...

  5. Kmeans聚类算法原理与实现

    Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...

  6. 机器学习六--K-means聚类算法

    机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...

  7. 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法

    版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...

  8. 沙湖王 | 用Scipy实现K-means聚类算法

    沙湖王 | 用Scipy实现K-means聚类算法 用Scipy实现K-means聚类算法

  9. Matlab中K-means聚类算法的使用(K-均值聚类)

    K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx, ...

随机推荐

  1. Java入门到精通——基础篇之多线程实现简单的PV操作的进程同步

    Java入门到精通——基础篇之多线程实现简单的PV操作的进程同步 一.概述     PV操作是对信号量进行的操作.     进程同步是指在并发进程之间存在一种制约关系,一个进程的执行依赖另一个进程的消 ...

  2. JRE下的rt.jar、tools.jar

    JRE下的rt.jar: 这个文件是极为重要的一个文件,rt是runtime的缩写,即运行时的意思.是java程序在运行时必不可少的文件. 里面包含了java程序员常用的包,如java.lang,ja ...

  3. 神经网络第三部分:网络Neural Networks, Part 3: The Network

    NEURAL NETWORKS, PART 3: THE NETWORK We have learned about individual neurons in the previous sectio ...

  4. php获取apk包信息的方法

    /*解析安卓apk包中的压缩XML文件,还原和读取XML内容 依赖功能:需要PHP的ZIP包函数支持.*/ include('./Apkparser.php'); $appObj = new Apkp ...

  5. 【C#设计模式——创建型模式】工场方法模式

    工场方法模式对简单工场模式进行了乔庙的扩展,不是用一个专门的类来决定实例化哪一个子类.相反,超类把这种决定延迟到每个子类.这种模式实际上没有决策点,就是没有直接选择一个子类实例化的决策. 看书上的例子 ...

  6. unity3d5.2.3中 调整视角

    按住alt键不放,然后左边的手的图标会变成一个眼睛,在Scene中移动.就会发现可以调整视角了

  7. Check if KeyValuePair exists with LINQ's FirstOrDefault

    http://stackoverflow.com/questions/793897/check-if-keyvaluepair-exists-with-linqs-firstordefault 问题: ...

  8. servlet基础讲解

    基本知识一.Web结构1.两种应用程序 ①桌面应用程序:QQ.CS.MyEclipse.Office.DW.360.浏览器等必须下载.安装.桌面快捷方式.注册表信息.操作系统后台服务.占用操作系统端口 ...

  9. [LeetCode#249] Group Shifted Strings

    Problem: Given a string, we can "shift" each of its letter to its successive letter, for e ...

  10. uva 10453 - Make Palindrome(dp, 记录路径)

    题目 题意: 给一个字符串 ,判断最少插入多少个字符 使字符串成为回文串, 并输出回文串. 思路:先用dp判断需要个数, 再递归输出路径. #include <iostream> #inc ...