for(i=;i<=n;i++)
{
for(j=i+;j<=n;j++)
if(a[j]>a[i]) swap(a[i],a[j]);
if(!a[i]) break;
for(j=;j>=;j--)
if(a[i]>>j&)
{
for(k=;k<=n;k++)
if(i!=k && (a[k]>>j&)) a[k]^=a[i];
break;
}
}

对着这个代码思(dan)考(teng)了一星期。。。

UPD:好像这两份代码干的事情一样?做完之后每一个数的最高位上只有这一个1。T_T谁能告诉我这两份代码有什么区别?各有什么用?还有为什么要这么做?

for(int i=;i<=n;i++)
for(int j=;j>=;j--)
{
if(a[i]>>(j-)&)
{
if(!lb[j]){lb[j]=a[i];break;}
else a[i]^=lb[j];
}
}

我们来证明一下,为什么消了元之后的a数组的任何一种选法对应原数组的一种选法?(SX问题,神犇请无视T_T)

假如我们有一个集合S=[x,S-{x}],那么对集合S选取的一种方案可以对应到S'=[x,{y^x|y∈{S-{x}}}]

令S-{X}=A,{y^x|y∈{S-{x}}}=B

因为假如这个方案

1)选x

i)另外选了奇数个A中的元素,那么S‘中的方案对应为  不选x,在B中选对应的元素

ii)另外选了偶数个A中的元素,那么S’中的方案对应为  选x,在B中选对应的元素

2)不选x

i)另外选了奇数个A中的元素,那么S‘中的方案对应为  选x,在B中选对应的元素

ii)另外选了偶数个A中的元素,那么S’中的方案对应为  不选x,在B中选对应的元素

所以这是一一对应的。所以我们就可以随便用某个方程取异或其它方程,选与不选还是相互独立且合法的。

(咦?我怎么想到了矩阵的初等变换?)

求大神给出简单证明T_T

高斯消元与xor方程组的更多相关文章

  1. 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树

    [题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...

  2. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

    http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...

  3. 关于高斯消元解决xor问题的总结

    我觉得xor这东西特别神奇,最神奇的就是这个性质了 A xor B xor B=A 这样就根本不用在意重复之类的问题了 关于xor的问题大家可以去膜拜莫队的<高斯消元解XOR方程组>,里面 ...

  4. 【高斯消元解xor方程】BZOJ1923-[Sdoi2010]外星千足虫

    [题目大意] 有n个数或为奇数或为偶数,现在进行m次操作,每次取出部分求和,告诉你这几次操作选取的数和它们和的奇偶性.如果通过这m次操作能得到所有数的奇偶性,则输出进行到第n次时即可求出答案:否则输出 ...

  5. poj1830(高斯消元解mod2方程组)

    题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位 ...

  6. UVA11542 Square(高斯消元 异或方程组)

    建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #includ ...

  7. Tsinsen-A1488 : 魔法波【高斯消元+异或方程组】

    高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和 ...

  8. BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)

    题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...

  9. poj1222(枚举or高斯消元解mod2方程组)

    题目链接: http://poj.org/problem?id=1222 题意: 有一个 5 * 6 的初始矩阵, 1 表示一个亮灯泡, 0 表示一个不亮的灯泡. 对 (i, j) 位置进行一次操作则 ...

随机推荐

  1. 编写一个小程序,从标准输入读入一系列string对象,寻找连续重复出现的单词。程序应该找出满足一下条件的单词:该单词的后面紧接着再次出现自己本身。跟踪重复次数最多的单词及其重复次数,输出.

    // test13.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...

  2. Ubuntu C++环境支持

    问题描述:         在Ubuntu中默认安装有gcc,但是只能编辑C程序,现在希望添加C++环境支持 问题解决:         首先是配置gcc,在ubuntu安装完成已经有gcc了(gcc ...

  3. linux进程管理之开机启动

    下面用自启动apache为例;自启动脚本:/usr/local/apache2/bin:./apachectl start文件位于/etc/rc.d/init.d下,名为apached, 注意要可执行 ...

  4. 【BZOJ】【1877】【SDOI2009】晨跑

    网络流/费用流 费用流入门题……根本就是模板题好吗! 拆点搞定度数限制,也就是每个点最多经过一次……源点汇点除外. /***************************************** ...

  5. 【POJ】【1739】Tony's Tour

    插头DP 楼教主男人八题之一! 要求从左下角走到右下角的哈密顿路径数量. 啊嘞,我只会求哈密顿回路啊……这可怎么搞…… 容易想到:要是把起点和重点直接连上就变成一条回路了……那么我们就连一下~ 我们可 ...

  6. [转载]淘宝API调用 申请 获取session key

    http://www.cnblogs.com/zknu/archive/2013/06/14/3135527.html 在调用淘宝的API时,我们都会用到appkey,appsecret,appses ...

  7. 项目中的libevent

    单线程libevent模式 项目里面是多线程版的,我先理解下单线程的. //client .调用NGP::init() bool NGP::init(NGPcontext context) { _co ...

  8. Spring事务配置的五种方式(转)

    前段时间对Spring的事务配置做了比较深入的研究,在此之间对Spring的事务配置虽说也配置过,但是一直没有一个清楚的认识.通过这次的学习发觉Spring的事务配置只要把思路理清,还是比较好掌握的. ...

  9. C/C++框架和库

    http://blog.csdn.net/xiaoxiaoyeyaya/article/details/42541419 值得学习的C语言开源项目 - 1. Webbench Webbench是一个在 ...

  10. Create a method synchronized without using synchronized keyword

    Actually, lots of ways: No need for synchronization at all if you don't have mutable state. No need ...