【题目链接】

http://www.lydsy.com/JudgeOnline/problem.php?id=2595

【题意】

给定N*M的长方形,选最少权值和的格子使得要求的K个点连通。

【科普】

“斯坦纳树”就是包含给定点的最小生成树。

【思路】

  那么本题就是求一棵斯坦纳树。

设f[i][j][S]表示在点(i,j)且与之相连的点的状态为S。

有两种转移:

f[i][j][S]<-f[i][j][S’]+f[i][j][S-S’]-a[i][j],合并子集

f[i][j][S]<-f[i’][j’][S]+a[i][j],相邻点更新

第一种转移可能包含重点的情况,所以还需要第二种转移方程。

第一种转移可以直接枚举子集完成转移。

  第二种转移的更新虽然会出现环的情况,但结果一定满足三角形不等式

    f[i][j][S]<=f[i’][j’][S]  +a[i][j]

所以可以用spfa算法求。

【代码】

 #include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = ;
const int inf = 0xf0f0f0f;
const int dx[]={,-,,};
const int dy[]={,,,-}; int n,m,K,st[N][N];
int vis[N][N],a[N][N],f[N][N][<<N],pre[N][N][<<N]; int pack(int i,int j) { return i*+j; }
void unpack(int x,int& i,int& j) { i=x/,j=x%; }
int pack2(int i,int j,int st) { return i*+j*+st; }
void unpack2(int x,int& i,int& j,int& st) { st=x%,i=x/,j=(x/)%; } int upd(int i,int j,int s,int x,int y,int s2,int w)
{
if(f[i][j][s]>w) return f[i][j][s]=w,pre[i][j][s]=pack2(x,y,s2),;
return ;
} queue<int> q;
int inq[N*N];
void spfa(int sta)
{
while(!q.empty()) {
int u=q.front(),i,j; q.pop();
inq[u]=;
unpack(u,i,j);
FOR(k,,) {
int x=i+dx[k],y=j+dy[k],tmp;
if(x<||x>=n||y<||y>=m) continue;
if(upd(x,y,sta,i,j,sta,f[i][j][sta]+a[x][y])&&(!inq[tmp=pack(x,y)])) {
q.push(tmp),inq[tmp]=;
}
}
}
}
void dfs(int i,int j,int st)
{
int x,y,nst;
vis[i][j]=;
if(!pre[i][j][st]) return ;
unpack2(pre[i][j][st],x,y,nst);
dfs(x,y,nst);
if(x==i&&y==j) dfs(x,y,st-nst);
} int main()
{
//freopen("trip.in","r",stdin);
//freopen("trip.out","w",stdout);
memset(f,0xf,sizeof(f));
scanf("%d%d",&n,&m);
FOR(i,,n-) FOR(j,,m-) {
scanf("%d",&a[i][j]);
if(!a[i][j]) st[i][j]=<<(K++),f[i][j][st[i][j]]=;
}
int all=(<<K),tmp;
FOR(sta,,all-) {
FOR(i,,n-) FOR(j,,m-) {
for(int s=sta&(sta-);s;s=(s-)&sta)
upd(i,j,sta,i,j,s,f[i][j][s]+f[i][j][sta-s]-a[i][j]);
if(f[i][j][sta]!=inf) q.push(tmp=pack(i,j)),inq[tmp]=;
}
spfa(sta);
}
FOR(i,,n-) FOR(j,,m-) if(!a[i][j]) {
printf("%d\n",f[i][j][all-]);
dfs(i,j,all-);
FOR(ii,,n-) {
FOR(jj,,m-) {
if(!a[ii][jj]) putchar('x');
else if(vis[ii][jj]) putchar('o');
else putchar('_');
}
puts("");
}
return ;
}
}

bzoj 2595 [Wc2008]游览计划(斯坦纳树)的更多相关文章

  1. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  2. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  3. Luogu 4294 [WC2008]游览计划 | 斯坦纳树

    题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...

  4. bzoj2595: [Wc2008]游览计划 斯坦纳树

    斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...

  5. bzoj2595 [Wc2008]游览计划——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...

  6. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. 洛谷4294 [WC2008]游览计划——斯坦纳树

    题目:https://www.luogu.org/problemnew/show/P4294 大概是状压.两种转移,一个是以同一个点为中心,S由自己的子集拼起来:一个是S相同.中心不同的同层转移. 注 ...

  9. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

随机推荐

  1. Sqlserver数据库分页查询

    Sqlserver数据库分页查询一直是Sqlserver的短板,闲来无事,想出几种方法,假设有表ARTICLE,字段ID.YEAR...(其他省略),数据53210条(客户真实数据,量不大),分页查询 ...

  2. 【最新】最流行的java后台框架 springmvc mybaits 集代码生成器 SSM SSH

        获取[下载地址]   QQ: 313596790   [免费支持更新] A 代码生成器(开发利器);全部是源码     增删改查的处理类,service层,mybatis的xml,SQL( m ...

  3. distinct用法

    distinct可以列出不重复的记录,对于单个字段来说distinct使用比较简单,但是对于多个字段来说,distinct使用起来会使人发狂.而且貌似也没有见到微软对distinct使用多字段的任何说 ...

  4. Mac系统在终端中查看CPU信息的命令

    在mac os x的终端中以命令行的形式查看本机cpu信息: sysctl -n machdep.cpu.brand_string E.G. lis-mbp:Home jenkins$ sysctl ...

  5. 给你的JAVA程序配置参数(Properties的使用)

    我们在写JAVA程序时,很多时候运行程序的参数是需要动态改变的 测试时一系列参数,运行时一系列参数 又或者数据库地址也需要配一套参数,以方便今后的动态部署 这些变量的初始化,我们在写小DEMO时完全可 ...

  6. bzoj2788

    明显是一个差分约束系统 对于第一种限制,其实就是x[a]+1<=x[b] x[b]-1<=x[a] 根据三角不等式很容易建图 但这题他比较奇怪,问的是X最多不同取值的个数 根据这张图的特殊 ...

  7. linux的HugePage与oracle amm关系

     如果Oracle 是11g以后的版本,那么默认创建的实例会使用Automatic Memory Management (AMM)的特性,该特性与HugePage不兼容. 在设置HugePage之前需 ...

  8. jQuery的威力

    jQuery如此之好用,和其在获取对象时使用与CSS选择器兼容的语法有很大关系,毕竟CSS选择器大家都很熟悉(关于CSS选择器可以看看十分钟搞定CSS选择器),但其强大在兼容了CSS3的选择器,甚至多 ...

  9. 使用mp4v2将H264+AAC合成mp4文件

    录制程序要添加新功能:录制CMMB电视节目,我们的板卡发送出来的是RTP流(H264视频和AAC音频),录制程序要做的工作是: (1)接收并解析RTP包,分离出H264和AAC数据流: (2)将H26 ...

  10. zoj 1842 Prime Distance

    // 数论题,增强的筛法,回想素数筛法 // 只要筛到最大数的开方,剩下的就是素数 // 于是这里,开一个 sqrt(2^31) 大约 65536 的素数表,然后 // 对于每个 L~U 的区间,筛掉 ...