Dijkstra--The Captain
给定平面上的n个点,定义$(x_1,y_1)$到$(x_2,y_2)$的费用为min(|$x_1$-$x_2$|,|$y_1$-$y_2$|),求从1号点走到n号点的最小费用。
先给一段证明:给定三个x值,$x_1<x_2<x_3$。可得$x_2-x_1<x_3-x_2<x_3-x_1$,对于最小费用,很明显只有$x_2-x_1$是有用的。对y同理,同时要注意我们不能把$x$和$y$两者混谈。由此我们得到了一个思路,分层图x和y跑一次最短路。
首先两个$cmp$函数对$n$个点进行的两次排序(注意在之前把点的序号也存下来):
bool cmp1(node a,node b)
{
return a.x<b.x;
}
bool cmp2(node a,node b)
{
return a.y<b.y;
}
链式前向星构图:
struct edge
{
int next,to,w;
}edge[maxn];
void add(int u,int v,int w)
{
edge[++tot].w=w;
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot;
}
sort(a+,a+n+,cmp1);
for (int i = ;i < n;i++)
{
add(a[i].id,a[i+].id,abs(a[i].x-a[i+].x));
add(a[i+].id,a[i].id,abs(a[i].x-a[i+].x));
}
sort(a+,a+n+,cmp2);
for (int i = ;i < n;i++)
{
add(a[i].id,a[i+].id,abs(a[i].y-a[i+].y));
add(a[i+].id,a[i].id,abs(a[i].y-a[i+].y));
}
然后是很标准的dij板子:
void Dijkstra(int S)
{
q.push(make_pair(,S)); memset(vis,,sizeof(vis)); memset(dis,0x3f,sizeof(dis)); dis[S] = ;
while(!q.empty())
{
int x = q.top().second;
q.pop();
if(vis[x])
continue;
vis[x] = ;
for(int i=head[x];i!=;i=edge[i].next)
{
int to1=edge[i].to;
if(dis[to1] > dis[x] + edge[i].w)
{
dis[to1] = dis[x] + edge[i].w ;
q.push(make_pair(-dis[to1],to1));
}
}
}
return;
}
完整代码如下:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
using namespace std;
#define ll long long
int n;
const int maxn=;
priority_queue< pair<int ,int > >q;
int dis[maxn],vis[maxn];
int tot=,head[maxn];
int read(){
int x=,a=;
char ch=getchar();
while (ch < ''||ch > ''){
if (ch == '-') x=-;
ch = getchar();
}
while (ch <= ''&&ch >= '')
{
a = a* + ch- '';
ch=getchar();
}
return x*a;
}
struct node
{
int x,y,id;
}a[maxn];
struct edge
{
int next,to,w;
}edge[maxn];
void add(int u,int v,int w)
{
edge[++tot].w=w;
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot;
}
bool cmp1(node a,node b)
{
return a.x<b.x;
}
bool cmp2(node a,node b)
{
return a.y<b.y;
}
void Dijkstra(int S)
{
q.push(make_pair(,S)); memset(vis,,sizeof(vis)); memset(dis,0x3f,sizeof(dis)); dis[S] = ;
while(!q.empty())
{
int x = q.top().second;
q.pop();
if(vis[x])
continue;
vis[x] = ;
for(int i=head[x];i!=;i=edge[i].next)
{
int to1=edge[i].to;
if(dis[to1] > dis[x] + edge[i].w)
{
dis[to1] = dis[x] + edge[i].w ;
q.push(make_pair(-dis[to1],to1));
}
}
}
return;
}
int main()
{
n=read();
for (int i = ;i <= n;i++)
{
a[i].x=read(),a[i].y=read();
a[i].id=i;
}
sort(a+,a+n+,cmp1);
for (int i = ;i < n;i++)
{
add(a[i].id,a[i+].id,abs(a[i].x-a[i+].x));
add(a[i+].id,a[i].id,abs(a[i].x-a[i+].x));
}
sort(a+,a+n+,cmp2);
for (int i = ;i < n;i++)
{
add(a[i].id,a[i+].id,abs(a[i].y-a[i+].y));
add(a[i+].id,a[i].id,abs(a[i].y-a[i+].y));
}
Dijkstra();
cout<<dis[n];
return ;
}
Dijkstra--The Captain的更多相关文章
- BZOJ4152The Captain[DIjkstra]
4152: [AMPPZ2014]The Captain Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 700 Solved: 266[Submit ...
- 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain
循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...
- bzoj4152 The Captain (dijkstra)
做dijkstra,但只需要贪心地把每个点连到它左边.右边.上边.下面的第一个点就可以了 #include<bits/stdc++.h> #define pa pair<int,in ...
- 【bzoj4152】[AMPPZ2014]The Captain 堆优化Dijkstra
题目描述 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 输入 第一行包含一个正整数n(2<=n< ...
- BZOJ4152 The Captain(dijkstra+巧妙建图)
BZOJ4152 The Captain 题面很简洁: 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 很明显 ...
- BZOJ 4152: [AMPPZ2014]The Captain Dijkstra+贪心
Code: #include <queue> #include <cstdio> #include <cstring> #include <algorithm ...
- 【堆优化Dijkstra】BZOJ4152- [AMPPZ2014]The Captain
[题目大意] 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. [思路] 按照某维坐标排序,相邻两个点在这一维度 ...
- BZOJ 4152: [AMPPZ2014]The Captain( 最短路 )
先按x排序, 然后只有相邻节点的边才有用, 我们连起来, 再按y排序做相同操作...然后就dijkstra ---------------------------------------------- ...
- bzoj4152[AMPPZ2014]The Captain 最短路
4152: [AMPPZ2014]The Captain Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1517 Solved: 603[Submi ...
- 『The Captain 最短路建图优化』
The Captain(BZOJ 4152) Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小 ...
随机推荐
- POJ1471 Tree/洛谷P4178 Tree
Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: voi ...
- shell-Startup-Files
shell-Startup-Files 1. 相关阅读 2. 主流shell 3. shell实例类型 4. Shell启动文件的必要元素 4.1 路径: 命令路径, 4.2 提示符 5. 主流she ...
- 【LOJ6498】「雅礼集训 2018 Day2」农民
题面 solution 直接暴力模拟,原数据可获得满分的成绩. 对于每个点,其父亲对其都有一个限制.故我们只需要判断当前点到根的路径上的限制是否都能满足即可. 考虑用树剖+线段树维护这个限制.考虑到翻 ...
- Flume 1.9.0 的安装(比较简单, 操作也不像老版本那么繁琐了)
之前已经完成了Hadoop集群.Hbase集群.Hive的搭建, 这次来安装一下flume-1.9.0 安装过程 将tar包上传并解压到指定目录, 并修改名称 tar -zxvf apache-flu ...
- C语言中可变参数的原理——printf()函数
函数原型: int printf(const char *format[,argument]...) 返 回 值: 成功则返回实际输出的字符数,失败返回-1. 函数说明: 使用过C语言的人所再熟悉不过 ...
- Window Server 2019 配置篇(3)- 建立hyper-v集群并在其上运行win10 pro虚拟机
上次讲到我们的域里有了网关跟DHCP,这次我们要在域中建立hyper-v集群并在其上运行win10 pro虚拟机 那么什么是hyper-v集群呢? 就是两个及两个以上的运行hyper-v服务的服务器建 ...
- C语言备忘录——static
对于这个关键字我一直没有弄清楚,今天特地去花了一定的时间去理解这个关键字.在函数或变量声明时,在数据类型前加上 static 后会有以下几个效果 一.用于函数定义时: 1.函数的链接属性会被修改,从e ...
- C++ Winsock
由于兼容的问题更新下winsock,有较好的移植性:客户端是非阻塞的,服务器是阻塞的! Win32控制台: 数据收发: 服务器向客户端发送一个txt文本内容和一个结构体数据: 服务器代码: #incl ...
- Oracle的操作经验
采用Oracle进行sql语句 建表并设置主键,主键自增,某一字段唯一性约束等 <---如果表存在则删除---> declare num number; begin select coun ...
- 3分钟学会Python 针对Excel操作
1.python 读取Excel # -*- coding: utf-8 -*- import xlrd import os,sys reload(sys) sys.setdefaultencodin ...