Robotic Sort

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1640    Accepted Submission(s): 711

Problem Description
Somewhere deep in the Czech Technical University buildings, there are laboratories for examining mechanical and electrical properties of various materials. In one of yesterday’s presentations, you have seen how was one of the laboratories changed into a new multimedia lab. But there are still others, serving to their original purposes.

In this task, you are to write software for a robot that handles samples in such a laboratory. Imagine there are material samples lined up on a running belt. The samples have different heights, which may cause troubles to the next processing unit. To eliminate such troubles, we need to sort the samples by their height into the ascending order.

Reordering is done by a mechanical robot arm, which is able to pick up any number of consecutive samples and turn them round, such that their mutual order is reversed. In other words, one robot operation can reverse the order of samples on positions between A and B.

A possible way to sort the samples is to find the position of the smallest one (P1) and reverse the order between positions 1 and P1, which causes the smallest sample to become first. Then we find the second one on position P and reverse the order between 2 and P2. Then the third sample is located etc.

The picture shows a simple example of 6 samples. The smallest one is on the 4th position, therefore, the robot arm reverses the first 4 samples. The second smallest sample is the last one, so the next robot operation will reverse the order of five samples on positions 2–6. The third step will be to reverse the samples 3–4, etc.

Your task is to find the correct sequence of reversal operations that will sort the samples using the above algorithm. If there are more samples with the same height, their mutual order must be preserved: the one that was given first in the initial order must be placed before the others in the final order too.

 
Input
The input consists of several scenarios. Each scenario is described by two lines. The first line contains one integer number N , the number of samples, 1 ≤ N ≤ 100 000. The second line lists exactly N space-separated positive integers, they specify the heights of individual samples and their initial order.

The last scenario is followed by a line containing zero.

 
Output
For each scenario, output one line with exactly N integers P1 , P1 , . . . PN ,separated by a space.
Each Pi must be an integer (1 ≤ Pi ≤ N ) giving the position of the i-th sample just before the i-th reversal operation.

Note that if a sample is already on its correct position Pi , you should output the number Pi anyway, indicating that the “interval between Pi and Pi ” (a single sample) should be reversed.

 
Sample Input
6
3 4 5 1 6 2
4
3 3 2 1
0
 
Sample Output
4 6 4 5 6 6
4 2 4 4
 
Source
 
Recommend
linle
 

splay tree

旋转操作

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/24 23:28:43
File Name :F:\2013ACM练习\专题学习\splay_tree_2\HDU1890.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; #define Key_value ch[ch[root][1]][0]
const int MAXN = ;
int pre[MAXN],ch[MAXN][],root,tot1;
int size[MAXN];//子树规模
int rev[MAXN];//反转标记
int s[MAXN],tot2;//内存池和容量 //debug部分**********************************
void Treavel(int x)
{
if(x)
{
Treavel(ch[x][]);
printf("结点:%2d: 左儿子 %2d 右儿子 %2d 父结点 %2d size = %2d rev = %2d\n",x,ch[x][],ch[x][],pre[x],size[x],rev[x]);
Treavel(ch[x][]);
}
}
void debug()
{
printf("root:%d\n",root);
Treavel(root);
}
//以上是debug部分************************************** void NewNode(int &r,int father,int k)
{
r = k;
pre[r] = father;
ch[r][] = ch[r][] = ;
size[r] = ;
rev[r] = ;
}
//反转的更新
void Update_Rev(int r)
{
if(!r)return;
swap(ch[r][],ch[r][]);
rev[r] ^= ;
}
inline void push_up(int r)
{
size[r] = size[ch[r][]] + size[ch[r][]] + ;
}
inline void push_down(int r)
{
if(rev[r])
{
Update_Rev(ch[r][]);
Update_Rev(ch[r][]);
rev[r] = ;
}
}
void Build(int &x,int l,int r,int father)
{
if(l > r)return;
int mid = (l+r)/;
NewNode(x,father,mid);
Build(ch[x][],l,mid-,x);
Build(ch[x][],mid+,r,x);
push_up(x);
}
int n;
void Init()
{
root = tot1 = tot2 = ;
ch[root][] = ch[root][] = pre[root] = size[root] = rev[root] = ;
NewNode(root,,n+);
NewNode(ch[root][],root,n+);
Build(Key_value,,n,ch[root][]);
push_up(ch[root][]);
push_up(root);
}
//旋转,0为左旋,1为右旋
inline void Rotate(int x,int kind)
{
int y = pre[x];
push_down(y);
push_down(x);//先把y的标记下传,在把x的标记下传
ch[y][!kind] = ch[x][kind];
pre[ch[x][kind]] = y;
if(pre[y])
ch[pre[y]][ch[pre[y]][]==y] = x;
pre[x] = pre[y];
ch[x][kind] = y;
pre[y] = x;
push_up(y);
}
//Splay调整,将r结点调整到goal下面
inline void Splay(int r,int goal)
{
push_down(r);
while(pre[r] != goal)
{
if(pre[pre[r]] == goal)
{
//有反转操作,需要先push_down,再判断左右孩子
push_down(pre[r]);
push_down(r);
Rotate(r,ch[pre[r]][]==r);
}
else
{
//有反转操作,需要先push_down
push_down(pre[pre[r]]);
push_down(pre[r]);
push_down(r);
int y = pre[r];
int kind = ch[pre[y]][]==y;
if(ch[y][kind] == r)
{
Rotate(r,!kind);
Rotate(r,kind);
}
else
{
Rotate(y,kind);
Rotate(r,kind);
}
}
}
push_up(r);
if(goal == ) root = r;
}
//得到第k个结点(需要push_down)
inline int Get_kth(int r,int k)
{
push_down(r);
int t = size[ch[r][]] + ;
if(t == k)return r;
if(t > k)return Get_kth(ch[r][],k);
else return Get_kth(ch[r][],k-t);
}
//找前驱(需要push_down)
inline int Get_pre(int r)
{
push_down(r);
if(ch[r][] == )return -;//不存在
r = ch[r][];
while(ch[r][])
{
r = ch[r][];
push_down(r);
}
return r;
}
//找后继(需要push_down)
inline int Get_next(int r)
{
push_down(r);
if(ch[r][] == )return -;
r = ch[r][];
while(ch[r][])
{
r = ch[r][];
push_down(r);
}
return r;
} struct Node
{
int id,val;
}node[MAXN];
bool cmp(Node a,Node b)
{
if(a.val != b.val)return a.val < b.val;
else return a.id < b.id;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(scanf("%d",&n) == && n)
{
for(int i = ;i <= n;i++)
{
scanf("%d",&node[i].val);
node[i].id = i;
}
sort(node+,node+n+,cmp);
Init();
for(int i = ; i <= n;i++)
{
Splay(node[i].id,);
printf("%d",size[ch[root][]]);
if(i < n)printf(" ");
else printf("\n");
Splay(Get_kth(root,i),);
Splay(Get_next(node[i].id),root);
Update_Rev(Key_value);
}
}
return ;
}

HDU 1890 Robotic Sort (splay tree)的更多相关文章

  1. HDU 1890 Robotic Sort(splay)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1890 [题意] 给定一个序列,每次将i..P[i]反转,然后输出P[i],P[i]定义为当前数字i ...

  2. hdu 1890 Robotic SortI(splay区间旋转操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 题解:splay又一高级的功能,区间旋转这个是用线段树这些实现不了的,这题可以学习splay的旋 ...

  3. HDU 1890--Robotic Sort(Splay Tree)

    题意:每次找出第i大的数的位置p输出,然后将i~p之间的数反转. 题解:每次把要的区间转成一棵子树,然后更新.因为每次将第i小的数转到了了i,所以k次操作后,可知前k个数一定是最小的那k个数,所以以后 ...

  4. hdu 1890 Robotic Sort(splay 区间反转+删点)

    题目链接:hdu 1890 Robotic Sort 题意: 给你n个数,每次找到第i小的数的位置,然后输出这个位置,然后将这个位置前面的数翻转一下,然后删除这个数,这样执行n次. 题解: 典型的sp ...

  5. 伸展树(Splay Tree)进阶 - 从原理到实现

    目录 1 简介 2 基础操作 2.1 旋转 2.2 伸展操作 3 常规操作 3.1 插入操作 3.2 删除操作 3.3 查找操作 3.4 查找某数的排名.查找某排名的数 3.4.1 查找某数的排名 3 ...

  6. 数据结构(二) --- 伸展树(Splay Tree)

    文章图片和代码来自邓俊辉老师课件 概述 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由丹尼尔·斯立特Daniel Sleator ...

  7. HDU 1890 Robotic Sort | Splay

    Robotic Sort Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) [Pr ...

  8. 数据结构(Splay平衡树):HDU 1890 Robotic Sort

    Robotic Sort Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. 纸上谈兵:伸展树(splay tree)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...

随机推荐

  1. linux内核之accept实现

    用户态对accept的标准用法: if ((client_fd = accept(sockfd, (struct sockaddr *)&remote_addr, &sin_size) ...

  2. Effective API Design

    Effective API Design */--> div.org-src-container { font-size: 85%; font-family: monospace; } Tabl ...

  3. 毕设demo写好

    2015年1月20日 14:41:47 阶段性暂停!! 把运行结果截图给了老师,老师说先整理下文档,然后下学期来了再部署到服务器上. 那么,下学期来了,估计也要把Epm和CR1000什么的搞好了. 先 ...

  4. spring-boot分环境打包为war包

    1.启动类修改 @EnableSwagger2 @SpringBootApplication public class CustWebAcApplication extends SpringBootS ...

  5. Loadrunner上传文件解决办法(大文件)

    Loadrunner上传文件解决办法(大文件) 最近再做一个跟海量存储相关的项目测试,需要通过LR模拟用户大量上传和下载文件,请求是Rest或Soap,同时还要模拟多种大小尺寸不一的文件 通常情况下, ...

  6. bzoj 1831

    思路:随便猜一猜填的数字是不下降的,反证很好证明,然后就没了.. #include<bits/stdc++.h> #define LL long long #define fi first ...

  7. JavaScript中正则的使用(1)

    通过例子学习正则中的常见语法(1) $num javascript var a = 'javascript'; var b = a.replace(/(java)(script)/gi, '$2-$1 ...

  8. Vue学习笔记进阶篇——Render函数

    基础 Vue 推荐在绝大多数情况下使用 template 来创建你的 HTML.然而在一些场景中,你真的需要 JavaScript 的完全编程的能力,这就是 render 函数,它比 template ...

  9. centos7 安装 supervisor

    一.安装 supervisor yum install python-setuptools easy_install supervisor 如果easy_install不好使就从官方下载: wget ...

  10. vue 单向数据流 & 双向绑定

    在react中是单向数据绑定,而在vue中的特色是双向数据绑定.但是其实就我个人的理解是: 其实无论是vue还是react其实还是提倡单向数据流去管理状态,这一点在vuex和redux状态管理器上体现 ...