Robotic Sort

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1640    Accepted Submission(s): 711

Problem Description
Somewhere deep in the Czech Technical University buildings, there are laboratories for examining mechanical and electrical properties of various materials. In one of yesterday’s presentations, you have seen how was one of the laboratories changed into a new multimedia lab. But there are still others, serving to their original purposes.

In this task, you are to write software for a robot that handles samples in such a laboratory. Imagine there are material samples lined up on a running belt. The samples have different heights, which may cause troubles to the next processing unit. To eliminate such troubles, we need to sort the samples by their height into the ascending order.

Reordering is done by a mechanical robot arm, which is able to pick up any number of consecutive samples and turn them round, such that their mutual order is reversed. In other words, one robot operation can reverse the order of samples on positions between A and B.

A possible way to sort the samples is to find the position of the smallest one (P1) and reverse the order between positions 1 and P1, which causes the smallest sample to become first. Then we find the second one on position P and reverse the order between 2 and P2. Then the third sample is located etc.

The picture shows a simple example of 6 samples. The smallest one is on the 4th position, therefore, the robot arm reverses the first 4 samples. The second smallest sample is the last one, so the next robot operation will reverse the order of five samples on positions 2–6. The third step will be to reverse the samples 3–4, etc.

Your task is to find the correct sequence of reversal operations that will sort the samples using the above algorithm. If there are more samples with the same height, their mutual order must be preserved: the one that was given first in the initial order must be placed before the others in the final order too.

 
Input
The input consists of several scenarios. Each scenario is described by two lines. The first line contains one integer number N , the number of samples, 1 ≤ N ≤ 100 000. The second line lists exactly N space-separated positive integers, they specify the heights of individual samples and their initial order.

The last scenario is followed by a line containing zero.

 
Output
For each scenario, output one line with exactly N integers P1 , P1 , . . . PN ,separated by a space.
Each Pi must be an integer (1 ≤ Pi ≤ N ) giving the position of the i-th sample just before the i-th reversal operation.

Note that if a sample is already on its correct position Pi , you should output the number Pi anyway, indicating that the “interval between Pi and Pi ” (a single sample) should be reversed.

 
Sample Input
6
3 4 5 1 6 2
4
3 3 2 1
0
 
Sample Output
4 6 4 5 6 6
4 2 4 4
 
Source
 
Recommend
linle
 

splay tree

旋转操作

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/24 23:28:43
File Name :F:\2013ACM练习\专题学习\splay_tree_2\HDU1890.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; #define Key_value ch[ch[root][1]][0]
const int MAXN = ;
int pre[MAXN],ch[MAXN][],root,tot1;
int size[MAXN];//子树规模
int rev[MAXN];//反转标记
int s[MAXN],tot2;//内存池和容量 //debug部分**********************************
void Treavel(int x)
{
if(x)
{
Treavel(ch[x][]);
printf("结点:%2d: 左儿子 %2d 右儿子 %2d 父结点 %2d size = %2d rev = %2d\n",x,ch[x][],ch[x][],pre[x],size[x],rev[x]);
Treavel(ch[x][]);
}
}
void debug()
{
printf("root:%d\n",root);
Treavel(root);
}
//以上是debug部分************************************** void NewNode(int &r,int father,int k)
{
r = k;
pre[r] = father;
ch[r][] = ch[r][] = ;
size[r] = ;
rev[r] = ;
}
//反转的更新
void Update_Rev(int r)
{
if(!r)return;
swap(ch[r][],ch[r][]);
rev[r] ^= ;
}
inline void push_up(int r)
{
size[r] = size[ch[r][]] + size[ch[r][]] + ;
}
inline void push_down(int r)
{
if(rev[r])
{
Update_Rev(ch[r][]);
Update_Rev(ch[r][]);
rev[r] = ;
}
}
void Build(int &x,int l,int r,int father)
{
if(l > r)return;
int mid = (l+r)/;
NewNode(x,father,mid);
Build(ch[x][],l,mid-,x);
Build(ch[x][],mid+,r,x);
push_up(x);
}
int n;
void Init()
{
root = tot1 = tot2 = ;
ch[root][] = ch[root][] = pre[root] = size[root] = rev[root] = ;
NewNode(root,,n+);
NewNode(ch[root][],root,n+);
Build(Key_value,,n,ch[root][]);
push_up(ch[root][]);
push_up(root);
}
//旋转,0为左旋,1为右旋
inline void Rotate(int x,int kind)
{
int y = pre[x];
push_down(y);
push_down(x);//先把y的标记下传,在把x的标记下传
ch[y][!kind] = ch[x][kind];
pre[ch[x][kind]] = y;
if(pre[y])
ch[pre[y]][ch[pre[y]][]==y] = x;
pre[x] = pre[y];
ch[x][kind] = y;
pre[y] = x;
push_up(y);
}
//Splay调整,将r结点调整到goal下面
inline void Splay(int r,int goal)
{
push_down(r);
while(pre[r] != goal)
{
if(pre[pre[r]] == goal)
{
//有反转操作,需要先push_down,再判断左右孩子
push_down(pre[r]);
push_down(r);
Rotate(r,ch[pre[r]][]==r);
}
else
{
//有反转操作,需要先push_down
push_down(pre[pre[r]]);
push_down(pre[r]);
push_down(r);
int y = pre[r];
int kind = ch[pre[y]][]==y;
if(ch[y][kind] == r)
{
Rotate(r,!kind);
Rotate(r,kind);
}
else
{
Rotate(y,kind);
Rotate(r,kind);
}
}
}
push_up(r);
if(goal == ) root = r;
}
//得到第k个结点(需要push_down)
inline int Get_kth(int r,int k)
{
push_down(r);
int t = size[ch[r][]] + ;
if(t == k)return r;
if(t > k)return Get_kth(ch[r][],k);
else return Get_kth(ch[r][],k-t);
}
//找前驱(需要push_down)
inline int Get_pre(int r)
{
push_down(r);
if(ch[r][] == )return -;//不存在
r = ch[r][];
while(ch[r][])
{
r = ch[r][];
push_down(r);
}
return r;
}
//找后继(需要push_down)
inline int Get_next(int r)
{
push_down(r);
if(ch[r][] == )return -;
r = ch[r][];
while(ch[r][])
{
r = ch[r][];
push_down(r);
}
return r;
} struct Node
{
int id,val;
}node[MAXN];
bool cmp(Node a,Node b)
{
if(a.val != b.val)return a.val < b.val;
else return a.id < b.id;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(scanf("%d",&n) == && n)
{
for(int i = ;i <= n;i++)
{
scanf("%d",&node[i].val);
node[i].id = i;
}
sort(node+,node+n+,cmp);
Init();
for(int i = ; i <= n;i++)
{
Splay(node[i].id,);
printf("%d",size[ch[root][]]);
if(i < n)printf(" ");
else printf("\n");
Splay(Get_kth(root,i),);
Splay(Get_next(node[i].id),root);
Update_Rev(Key_value);
}
}
return ;
}

HDU 1890 Robotic Sort (splay tree)的更多相关文章

  1. HDU 1890 Robotic Sort(splay)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1890 [题意] 给定一个序列,每次将i..P[i]反转,然后输出P[i],P[i]定义为当前数字i ...

  2. hdu 1890 Robotic SortI(splay区间旋转操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 题解:splay又一高级的功能,区间旋转这个是用线段树这些实现不了的,这题可以学习splay的旋 ...

  3. HDU 1890--Robotic Sort(Splay Tree)

    题意:每次找出第i大的数的位置p输出,然后将i~p之间的数反转. 题解:每次把要的区间转成一棵子树,然后更新.因为每次将第i小的数转到了了i,所以k次操作后,可知前k个数一定是最小的那k个数,所以以后 ...

  4. hdu 1890 Robotic Sort(splay 区间反转+删点)

    题目链接:hdu 1890 Robotic Sort 题意: 给你n个数,每次找到第i小的数的位置,然后输出这个位置,然后将这个位置前面的数翻转一下,然后删除这个数,这样执行n次. 题解: 典型的sp ...

  5. 伸展树(Splay Tree)进阶 - 从原理到实现

    目录 1 简介 2 基础操作 2.1 旋转 2.2 伸展操作 3 常规操作 3.1 插入操作 3.2 删除操作 3.3 查找操作 3.4 查找某数的排名.查找某排名的数 3.4.1 查找某数的排名 3 ...

  6. 数据结构(二) --- 伸展树(Splay Tree)

    文章图片和代码来自邓俊辉老师课件 概述 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由丹尼尔·斯立特Daniel Sleator ...

  7. HDU 1890 Robotic Sort | Splay

    Robotic Sort Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) [Pr ...

  8. 数据结构(Splay平衡树):HDU 1890 Robotic Sort

    Robotic Sort Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. 纸上谈兵:伸展树(splay tree)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...

随机推荐

  1. Linux 获取网关地址

    route命令的用法:操作或者显示IP路由表route:DESCRIPTION Route manipulates the kernel's IP routing tables. Its primar ...

  2. C++之构造函数的继承

    #include<iostream> usingnamespace std; classBase1 { public: Base1()=default; Base1(const strin ...

  3. python3项目之数据可视化

    数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联. 数据科学家使用Python编写了一系列令人印象深刻的可视化和分析工具,其中很多也可供 ...

  4. 最邻近规则分类KNN算法

    例子: 求未知电影属于什么类型: 算法介绍: 步骤:  为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已 ...

  5. 12 打印1到最大的n位数

    输入数字 n,按顺序打印出从 1 最大的 n 位十进制数.比如输入 3,则打印出 1.2.3 一直到最大的 3 位数即 999.由于 n 可能会非常大,因此不能直接用 int 表示数字,而是用 cha ...

  6. hdu 5120(求两个圆环相交的面积 2014北京现场赛 I题)

    两个圆环的内外径相同 给出内外径 和 两个圆心 求两个圆环相交的面积 画下图可以知道 就是两个大圆交-2*小圆与大圆交+2小圆交 Sample Input22 30 00 02 30 05 0 Sam ...

  7. Python全栈开发之13、CSS

    一.css简介 CSS 是 Cascading Style Sheets的缩写,用来设计网页的样式布局,以及大小来适应不同的屏幕等,使网页的样式和网页数据分离, 二.导入css 导入css有4种方式: ...

  8. RabbitMQ路由类型

    关于RabbitMQ的Exchange类型 参考地址:<RabbitMQ学习系列(四): 几种Exchange 模式> github地址:https://github.com/ChenWe ...

  9. matlab .fig转化成pdf 缺失

    1. 在matlab figure里面,Edit -> Copy Figure 2. 粘贴到ppt中即可

  10. [js]变量与数据类型篇

    一.变量 在JavaScript中就用一个变量名表示变量,变量名是大小写英文.数字.$和_的组合,不能用数字开头.变量名也不能是JavaScript的关键字: 1.变量的声明 (1)var:申明一个变 ...