Robotic Sort

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1640    Accepted Submission(s): 711

Problem Description
Somewhere deep in the Czech Technical University buildings, there are laboratories for examining mechanical and electrical properties of various materials. In one of yesterday’s presentations, you have seen how was one of the laboratories changed into a new multimedia lab. But there are still others, serving to their original purposes.

In this task, you are to write software for a robot that handles samples in such a laboratory. Imagine there are material samples lined up on a running belt. The samples have different heights, which may cause troubles to the next processing unit. To eliminate such troubles, we need to sort the samples by their height into the ascending order.

Reordering is done by a mechanical robot arm, which is able to pick up any number of consecutive samples and turn them round, such that their mutual order is reversed. In other words, one robot operation can reverse the order of samples on positions between A and B.

A possible way to sort the samples is to find the position of the smallest one (P1) and reverse the order between positions 1 and P1, which causes the smallest sample to become first. Then we find the second one on position P and reverse the order between 2 and P2. Then the third sample is located etc.

The picture shows a simple example of 6 samples. The smallest one is on the 4th position, therefore, the robot arm reverses the first 4 samples. The second smallest sample is the last one, so the next robot operation will reverse the order of five samples on positions 2–6. The third step will be to reverse the samples 3–4, etc.

Your task is to find the correct sequence of reversal operations that will sort the samples using the above algorithm. If there are more samples with the same height, their mutual order must be preserved: the one that was given first in the initial order must be placed before the others in the final order too.

 
Input
The input consists of several scenarios. Each scenario is described by two lines. The first line contains one integer number N , the number of samples, 1 ≤ N ≤ 100 000. The second line lists exactly N space-separated positive integers, they specify the heights of individual samples and their initial order.

The last scenario is followed by a line containing zero.

 
Output
For each scenario, output one line with exactly N integers P1 , P1 , . . . PN ,separated by a space.
Each Pi must be an integer (1 ≤ Pi ≤ N ) giving the position of the i-th sample just before the i-th reversal operation.

Note that if a sample is already on its correct position Pi , you should output the number Pi anyway, indicating that the “interval between Pi and Pi ” (a single sample) should be reversed.

 
Sample Input
6
3 4 5 1 6 2
4
3 3 2 1
0
 
Sample Output
4 6 4 5 6 6
4 2 4 4
 
Source
 
Recommend
linle
 

splay tree

旋转操作

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/24 23:28:43
File Name :F:\2013ACM练习\专题学习\splay_tree_2\HDU1890.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; #define Key_value ch[ch[root][1]][0]
const int MAXN = ;
int pre[MAXN],ch[MAXN][],root,tot1;
int size[MAXN];//子树规模
int rev[MAXN];//反转标记
int s[MAXN],tot2;//内存池和容量 //debug部分**********************************
void Treavel(int x)
{
if(x)
{
Treavel(ch[x][]);
printf("结点:%2d: 左儿子 %2d 右儿子 %2d 父结点 %2d size = %2d rev = %2d\n",x,ch[x][],ch[x][],pre[x],size[x],rev[x]);
Treavel(ch[x][]);
}
}
void debug()
{
printf("root:%d\n",root);
Treavel(root);
}
//以上是debug部分************************************** void NewNode(int &r,int father,int k)
{
r = k;
pre[r] = father;
ch[r][] = ch[r][] = ;
size[r] = ;
rev[r] = ;
}
//反转的更新
void Update_Rev(int r)
{
if(!r)return;
swap(ch[r][],ch[r][]);
rev[r] ^= ;
}
inline void push_up(int r)
{
size[r] = size[ch[r][]] + size[ch[r][]] + ;
}
inline void push_down(int r)
{
if(rev[r])
{
Update_Rev(ch[r][]);
Update_Rev(ch[r][]);
rev[r] = ;
}
}
void Build(int &x,int l,int r,int father)
{
if(l > r)return;
int mid = (l+r)/;
NewNode(x,father,mid);
Build(ch[x][],l,mid-,x);
Build(ch[x][],mid+,r,x);
push_up(x);
}
int n;
void Init()
{
root = tot1 = tot2 = ;
ch[root][] = ch[root][] = pre[root] = size[root] = rev[root] = ;
NewNode(root,,n+);
NewNode(ch[root][],root,n+);
Build(Key_value,,n,ch[root][]);
push_up(ch[root][]);
push_up(root);
}
//旋转,0为左旋,1为右旋
inline void Rotate(int x,int kind)
{
int y = pre[x];
push_down(y);
push_down(x);//先把y的标记下传,在把x的标记下传
ch[y][!kind] = ch[x][kind];
pre[ch[x][kind]] = y;
if(pre[y])
ch[pre[y]][ch[pre[y]][]==y] = x;
pre[x] = pre[y];
ch[x][kind] = y;
pre[y] = x;
push_up(y);
}
//Splay调整,将r结点调整到goal下面
inline void Splay(int r,int goal)
{
push_down(r);
while(pre[r] != goal)
{
if(pre[pre[r]] == goal)
{
//有反转操作,需要先push_down,再判断左右孩子
push_down(pre[r]);
push_down(r);
Rotate(r,ch[pre[r]][]==r);
}
else
{
//有反转操作,需要先push_down
push_down(pre[pre[r]]);
push_down(pre[r]);
push_down(r);
int y = pre[r];
int kind = ch[pre[y]][]==y;
if(ch[y][kind] == r)
{
Rotate(r,!kind);
Rotate(r,kind);
}
else
{
Rotate(y,kind);
Rotate(r,kind);
}
}
}
push_up(r);
if(goal == ) root = r;
}
//得到第k个结点(需要push_down)
inline int Get_kth(int r,int k)
{
push_down(r);
int t = size[ch[r][]] + ;
if(t == k)return r;
if(t > k)return Get_kth(ch[r][],k);
else return Get_kth(ch[r][],k-t);
}
//找前驱(需要push_down)
inline int Get_pre(int r)
{
push_down(r);
if(ch[r][] == )return -;//不存在
r = ch[r][];
while(ch[r][])
{
r = ch[r][];
push_down(r);
}
return r;
}
//找后继(需要push_down)
inline int Get_next(int r)
{
push_down(r);
if(ch[r][] == )return -;
r = ch[r][];
while(ch[r][])
{
r = ch[r][];
push_down(r);
}
return r;
} struct Node
{
int id,val;
}node[MAXN];
bool cmp(Node a,Node b)
{
if(a.val != b.val)return a.val < b.val;
else return a.id < b.id;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(scanf("%d",&n) == && n)
{
for(int i = ;i <= n;i++)
{
scanf("%d",&node[i].val);
node[i].id = i;
}
sort(node+,node+n+,cmp);
Init();
for(int i = ; i <= n;i++)
{
Splay(node[i].id,);
printf("%d",size[ch[root][]]);
if(i < n)printf(" ");
else printf("\n");
Splay(Get_kth(root,i),);
Splay(Get_next(node[i].id),root);
Update_Rev(Key_value);
}
}
return ;
}

HDU 1890 Robotic Sort (splay tree)的更多相关文章

  1. HDU 1890 Robotic Sort(splay)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1890 [题意] 给定一个序列,每次将i..P[i]反转,然后输出P[i],P[i]定义为当前数字i ...

  2. hdu 1890 Robotic SortI(splay区间旋转操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 题解:splay又一高级的功能,区间旋转这个是用线段树这些实现不了的,这题可以学习splay的旋 ...

  3. HDU 1890--Robotic Sort(Splay Tree)

    题意:每次找出第i大的数的位置p输出,然后将i~p之间的数反转. 题解:每次把要的区间转成一棵子树,然后更新.因为每次将第i小的数转到了了i,所以k次操作后,可知前k个数一定是最小的那k个数,所以以后 ...

  4. hdu 1890 Robotic Sort(splay 区间反转+删点)

    题目链接:hdu 1890 Robotic Sort 题意: 给你n个数,每次找到第i小的数的位置,然后输出这个位置,然后将这个位置前面的数翻转一下,然后删除这个数,这样执行n次. 题解: 典型的sp ...

  5. 伸展树(Splay Tree)进阶 - 从原理到实现

    目录 1 简介 2 基础操作 2.1 旋转 2.2 伸展操作 3 常规操作 3.1 插入操作 3.2 删除操作 3.3 查找操作 3.4 查找某数的排名.查找某排名的数 3.4.1 查找某数的排名 3 ...

  6. 数据结构(二) --- 伸展树(Splay Tree)

    文章图片和代码来自邓俊辉老师课件 概述 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由丹尼尔·斯立特Daniel Sleator ...

  7. HDU 1890 Robotic Sort | Splay

    Robotic Sort Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) [Pr ...

  8. 数据结构(Splay平衡树):HDU 1890 Robotic Sort

    Robotic Sort Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. 纸上谈兵:伸展树(splay tree)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...

随机推荐

  1. Windows Phone 8 获取设备名称

    通过使用Microsoft.Phone.Info.DeviceStatus类,我们可以获取设备的一些信息,如设备厂商,设备名称等.通过Microsoft.Phone.Info.DeviceStatus ...

  2. 数据库-mysql事务

    MySQL 事务 MySQL 事务主要用于处理操作量大,复杂度高的数据.比如说,在人员管理系统中,你删除一个人员,你即需要删除人员的基本资料,也要删除和该人员相关的信息,如信箱,文章等等,这样,这些数 ...

  3. 常用SQL Server 语句

       常用SQL语句大全 1.//创建数据库 CREATE DATABASE DBName 2.//删除数据库 DROP DATABASE DBName 3.//备份SQL SERVER --- 创建 ...

  4. SQL Server中的快捷键

    新建查询:Ctrl + N 反撤销:Ctrl + Y 撤销:Ctrl + Z 查找:Ctrl + F 启动调试:Alt + F5 注释:Ctrl + K + C 取消注释:Ctrl + K + U 执 ...

  5. ASP.NET WebAPI 01-Demo

    WebAPI作为构建RESTful的平台出来有段时间了,加上最近也在用,所以想把自己的心得记录下来.我就以一个简单的增删查改作为开篇. 准备 实体类(Figure)的定义. public class ...

  6. poj3624 Charm Bracelet(DP,01背包)

    题目链接 http://poj.org/problem?id=3624 题意 有n个手镯,每个手镯有两个属性:重量W,需求因子D.还有一个背包,它能装下总重量不超过M的手镯.现在将一些镯子装入背包,求 ...

  7. Linux下安装Zookeeper

    Zookeeper是一个协调服务,可以用它来作为配置维护.名字服务.分布式部署: 下面,我来分享一下在Linux下安装Zookeeper的整个步骤,让大家少走弯路. 一.Zookeeper下载 [ro ...

  8. linux查找文件或目录命令

    inux查找文件或目录命令,前提:知道文件或者目录的具体名字,例如:sphinx.conf find 查找  find / -name dirname  查找目录 find -name filenam ...

  9. webstorm2018最新激活码license server

    2018.7.5最新激活码: license server:https://s.tuzhihao.com:666/ 以后持续更新....

  10. android无后缀二进制执行文件替代apk实现程序功能

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha android无后缀二进制执行文件替代apk实现程序功能 实现将data/Android ...