BZOJ3462 DZY Loves Math II(动态规划+组合数学)
容易发现这是一个有各种玄妙性质的完全背包计数。
对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x。那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组合数即可。多重背包计数可以前缀和优化。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 2000010
#define ll long long
#define P 1000000007
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int S,m,prime[N],f[N<<],g[N<<],inv[],cnt=;
int C(ll n,int m)
{
int s=;
for (ll i=n;i>n-m;i--)
s=i%P*s%P;
return 1ll*s*inv[m]%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3462.in","r",stdin);
freopen("bzoj3462.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
S=read(),m=read();
inv[]=;for (int i=;i<=;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
bool flag=;
for (int i=;i<=S;i++)
if (S%i==)
{
prime[++cnt]=i;S/=i;
if (S%i==) {flag=;break;}
if (S==) break;
}
for (int i=;i<=cnt;i++) S*=prime[i];
f[]=;
for (int i=;i<=cnt;i++)
{
g[]=;
for (int k=prime[i];k<=S*;k++)
{
g[k]=(g[k-prime[i]]+f[k])%P;
f[k]=(g[k]-(k>=S?g[k-S]:)+P)%P;
}
}
while (m--)
{
ll n=read();
if (!flag) printf("0\n");
else
{
for (int i=;i<=cnt;i++) n-=prime[i];
if (n<) printf("0\n");
else
{
int ans=;
for (int i=;i<=cnt;i++)
if (i*S<=n) ans=(ans+1ll*C(n/S-i+cnt-,cnt-)*f[n%S+i*S]%P)%P;
printf("%d\n",ans);
}
}
}
return ;
}
BZOJ3462 DZY Loves Math II(动态规划+组合数学)的更多相关文章
- BZOJ 3462 DZY Loves Math II ——动态规划 组合数
好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划 ...
- BZOJ3462 DZY Loves Math II 【多重背包 + 组合数】
题目 输入格式 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. 输出格式 输出共 q 行,分别为每个询问的答案. 输入样例 30 3 9 29 1000000 ...
- [bzoj3462]DZY Loves Math II (美妙数学+背包dp)
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...
- bzoj3462: DZY Loves Math II
状态很差脑子不清醒了,柿子一直在推错.... ... 不难发现这个题实际上是一个完全背包 问题在于n太大了,相应的有质数的数量不会超过7个 假设要求sigema(1~plen)i pi*ci=n 的方 ...
- bzoj 3462: DZY Loves Math II
3462: DZY Loves Math II Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 211 Solved: 103[Submit][Sta ...
- DZY Loves Math II:多重背包dp+组合数
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...
- DZY Loves Math II
简要题面 对于正整数 \(S, n\),求满足如下条件的素数数列 \((p_1,p_2,\cdots,p_k)\)(\(k\) 为任意正整数) 的个数: \(p_1\le p_2\le\cdots\l ...
- DZY Loves Math系列
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...
- [BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...
随机推荐
- Windows下Redis安装及使用
1.下载安装Redis(安装直接下一步就行,此步骤省略) Redis-x64-3.2.100.exe 2.Redis使用 安装目录如下: ①cmd启动redis: ②将redis安装为服务 此时如果安 ...
- SICP读书笔记 2.4
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- Visual Studio的框选代码区块功能
要从Visual Studio里复制代码粘贴到其他地方,会因为对齐的问题,造成粘贴的时候,代码左边带有大量的空格. 而VS有一个很好的功能就是框选功能,使用方法是,将光标放置在要框选代码的最左边,然后 ...
- Kafka科普系列 | Kafka中的事务是什么样子的?
事务,对于大家来说可能并不陌生,比如数据库事务.分布式事务,那么Kafka中的事务是什么样子的呢? 在说Kafka的事务之前,先要说一下Kafka中幂等的实现.幂等和事务是Kafka 0.11.0.0 ...
- Docker 在Windows上的安装
1. 软件从Docker官网下载,进行安装,安装后,能看到如下界面. 2. 安装后,查看Docker 版 本信息. 3. 配置加速器 (1)选择setting. (2)依次选择,并填写自己的加速器地址 ...
- maven 添加spring/springmvc依赖项
<spring.version>4.3.18.RELEASE</spring.version> <dependencies> <!--添加spring.spr ...
- ExternalAccessory串口通信
ExternalAccessory 使用文档 项目下载地址 前言 公司希望通过串口通信的方式实现苹果手机与公司产品进行通信,通过Lighting接口,也就是苹果的数据线.苹果的API External ...
- Python 命令行解析工具 Argparse介绍
最近在研究pathon的命令行解析工具,argparse,它是Python标准库中推荐使用的编写命令行程序的工具. 以前老是做UI程序,今天试了下命令行程序,感觉相当好,不用再花大把时间去研究界面问题 ...
- kafka handler
1.配置kafka 参数文件 在ogg主目录下有示例文件: [root@WH0PRDBRP00AP0013 ogg]# cd AdapterExamples/big-data/kafka/ [root ...
- 实验三 敏捷开发与XP实践 实验报告 20135232王玥
一.实验内容 1. XP基础 2. XP核心实践 3. 相关工具 二.实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2. ...