关于MapReduce中自定义分区类(四)
MapTask类
if(useNewApi){runNewMapper(job, splitMetaInfo, umbilical, reporter);}
@SuppressWarnings("unchecked")private<INKEY,INVALUE,OUTKEY,OUTVALUE>void runNewMapper(final JobConf job,final TaskSplitIndex splitIndex,final TaskUmbilicalProtocol umbilical,TaskReporter reporter) throws IOException,ClassNotFoundException,InterruptedException{// make a task context so we can get the classesorg.apache.hadoop.mapreduce.TaskAttemptContext taskContext =new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job,getTaskID(),reporter);// make a mapperorg.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =(org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)ReflectionUtils.newInstance(taskContext.getMapperClass(), job);// make the input formatorg.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);// rebuild the input splitorg.apache.hadoop.mapreduce.InputSplit split = null;split = getSplitDetails(newPath(splitIndex.getSplitLocation()),splitIndex.getStartOffset());LOG.info("Processing split: "+ split);org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =newNewTrackingRecordReader<INKEY,INVALUE>(split, inputFormat, reporter, taskContext);job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());org.apache.hadoop.mapreduce.RecordWriter output = null;// get an output objectif(job.getNumReduceTasks()==0){output = 如果jreduce个数等于0.则执行该方法newNewDirectOutputCollector(taskContext, job, umbilical, reporter);}else{如果reduce个数大于0.则执行该方法output =newNewOutputCollector(taskContext, job, umbilical, reporter);}org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE>mapContext =newMapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(),input, output,committer,reporter, split);org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.ContextmapperContext =newWrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(mapContext);try{input.initialize(split, mapperContext);mapper.run(mapperContext);mapPhase.complete();setPhase(TaskStatus.Phase.SORT);statusUpdate(umbilical);input.close();input = null;output.close(mapperContext);output = null;} finally {closeQuietly(input);closeQuietly(output, mapperContext);}}
// get an output objectif(job.getNumReduceTasks()==0){output = 如果jreduce个数等于0.则执行该方法newNewDirectOutputCollector(taskContext, job, umbilical, reporter);}else{如果reduce个数大于0.则执行该方法output =newNewOutputCollector(taskContext, job, umbilical, reporter);}
NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,JobConf job,TaskUmbilicalProtocol umbilical,TaskReporter reporter) throws IOException,ClassNotFoundException{collector = createSortingCollector(job, reporter);partitions = jobContext.getNumReduceTasks();if(partitions >1){partitioner =(org.apache.hadoop.mapreduce.Partitioner<K,V>)ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);}else{partitioner =new org.apache.hadoop.mapreduce.Partitioner<K,V>(){@Overridepublicint getPartition(K key, V value,int numPartitions){return partitions -1;}};}}
/*** Get the {@link Partitioner} class for the job.** @return the {@link Partitioner} class for the job.*/publicClass<? extends Partitioner<?,?>> getPartitionerClass()throws ClassNotFoundException;
/*** Get the {@link Partitioner} class for the job.** @return the {@link Partitioner} class for the job.*/@SuppressWarnings("unchecked")publicClass<? extends Partitioner<?,?>> getPartitionerClass()throws ClassNotFoundException{return(Class<? extends Partitioner<?,?>>)conf.getClass(PARTITIONER_CLASS_ATTR,HashPartitioner.class);}
publicclassHashPartitioner<K, V>extendsPartitioner<K, V>{/** Use {@link Object#hashCode()} to partition. */publicint getPartition(K key, V value,int numReduceTasks){return(key.hashCode()&Integer.MAX_VALUE)% numReduceTasks;}}
@Overridepublicint hashCode(){final int prime =31;int result =1;result = prime * result +((account == null)?0: account.hashCode());// result = prime * result + ((amount == null) ? 0 : amount.hashCode());return result;}
publicstaticclassKeyPartitioner extends Partitioner<SelfKey,DoubleWritable>{@Overridepublicint getPartition(SelfKey key,DoubleWritable value,int numPartitions){/*** 如何保证数据整体输出上的有序,需要我们自定义业务逻辑* 必须提示前知道num reduce task 个数?* \w 单词字符[a-zA-Z_0-9]**/String account =key.getAccount();//0xxaaabbb 0-9//[0-2][3-6][7-9]if(account.matches("\\w*[0-2]")){return0;}elseif(account.matches("\\w*[3-6]")){return1;}elseif(account.matches("\\w*[7-9]")){return2;}return0;}}
关于MapReduce中自定义分区类(四)的更多相关文章
- 关于MapReduce中自定义分组类(三)
Job类 /** * Define the comparator that controls which keys are grouped together * for a single ...
- 关于MapReduce中自定义Combine类(一)
MRJobConfig public static fina COMBINE_CLASS_ATTR 属性COMBINE_CLASS_ATTR = "mapreduce.j ...
- 在hadoop作业中自定义分区和归约
当遇到有特殊的业务需求时,需要对hadoop的作业进行分区处理 那么我们可以通过自定义的分区类来实现 还是通过单词计数的例子,JMapper和JReducer的代码不变,只是在JSubmit中改变了设 ...
- 关于MapReduce中自定义带比较key类、比较器类(二)——初学者从源码查看其原理
Job类 /** * Define the comparator that controls * how the keys are sorted before they * are pa ...
- MapReduce之自定义分区器Partitioner
@ 目录 问题引出 默认Partitioner分区 自定义Partitioner步骤 Partition分区案例实操 分区总结 问题引出 要求将统计结果按照条件输出到不同文件中(分区). 比如:将统计 ...
- python3.4中自定义数组类(即重写数组类)
'''自定义数组类,实现数组中数字之间的四则运算,内积运算,大小比较,数组元素访问修改及成员测试等功能''' class MyArray: '''保证输入值为数字元素(整型,浮点型,复数)''' de ...
- flask中自定义日志类
一:项目架构 二:自定义日志类 1. 建立log.conf的配置文件 log.conf [log] LOG_PATH = /log/ LOG_NAME = info.log 2. 定义日志类 LogC ...
- 读取SequenceFile中自定义Writable类型值
1)hadoop允许程序员创建自定义的数据类型,如果是key则必须要继承WritableComparable,因为key要参与排序,而value只需要继承Writable就可以了.以下定义一个Doub ...
- Java中自定义注解类,并加以运用
在Java框架中,经常会使用注解,而且还可以省很多事,来了解下自定义注解. 注解是一种能被添加到java代码中的元数据,类.方法.变量.参数和包都可以用注解来修饰.注解对于它所修饰的代码并没有直接的影 ...
随机推荐
- Oracle中如何实现Mysql的两表关联update操作
在看<MySQL 5.1参考手册>的时候,发现MySQL提供了一种两表关联update操作.原文如下: UPDATE items,month SET items.price=month.p ...
- Mysql查询语句使用select.. for update导致的数据库死锁分析
近期有一个业务需求,多台机器需要同时从Mysql一个表里查询数据并做后续业务逻辑,为了防止多台机器同时拿到一样的数据,每台机器需要在获取时锁住获取数据的数据段,保证多台机器不拿到相同的数据. 我们My ...
- java环境变量配置
1.打开我的电脑--属性--高级--环境变量 2.新建系统变量JAVA_HOME 和CLASSPATH 变量名:JAVA_HOME 变量值:C:\Program Files\Java\jdk1.7.0 ...
- 在Ubuntu Server 14.04中搭建FTP服务器(VMWare)
自己搭建ftp服务器,方便主机与虚拟机中的Ubuntu传输文件. 选用的ftp软件为vsftpd. 1.命令行: sudo apt-get install vsftpd 2.安装完配置: vsftpd ...
- HDOJ 2317. Nasty Hacks 模拟水题
Nasty Hacks Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- HDOJ 1008. Elevator 简单模拟水题
Elevator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- Hibernate 查询方式(HQL/QBC/QBE)汇总
作为老牌的 ORM 框架,Hibernate 在推动数据库持久化层所做出的贡献有目共睹. 它所提供的数据查询方式也越来越丰富,从 SQL 到自创的 HQL,再到面向对象的标准化查询. 虽然查询方式有点 ...
- 内核控制Meta标签:让360浏览器默认使用极速模式打开网页(转)
为了让网站页面不那么臃肿,也懒的理IE了,同时兼顾更多的国内双核浏览器,在网页页头中添加了下面两行Meta控制标签. 1,网页头部加入 <meta name="renderer&quo ...
- AngularJS表达式
1. AngularJS使用表达式把数据绑定到HTML. 2. AngularJS表达式的特点: 表达式写在双大括号内:{{表达式}}. 表达式把数据绑定到HTML,这与ng-bind指令有异曲同工之 ...
- Shell命令_smem
监控各个进程.用户的内存使用情况 基础条件:需要安装yum工具 centos 7.0 1.安装smem [root@VM_31_182_centos src]# yum install smem py ...