【KAWAKO】TVM-使用c++进行推理
前言
在tvm工程的apps目录下,有一个howto_deploy的工程,根据此工程进行修改,可以得到c++推理程序。

修改cpp_deploy.cc文件
DeploySingleOp()函数不需要,直接将其和相关的Verify函数一起删掉。

修改DeployGraphExecutor()函数
读取指定模型,同时获得后面所需的函数
LOG(INFO) << "Running graph executor...";
printf("load in the library\n");
DLDevice dev{kDLCPU, 1};
tvm::runtime::Module mod_factory = tvm::runtime::Module::LoadFromFile("../model_autotune.so");
printf("create the graph executor module\n");
tvm::runtime::Module gmod = mod_factory.GetFunction("default")(dev);printf(" default\n");
tvm::runtime::PackedFunc set_input = gmod.GetFunction("set_input");printf(" set_input\n");
tvm::runtime::PackedFunc get_output = gmod.GetFunction("get_output");printf(" get_output\n");
tvm::runtime::PackedFunc run = gmod.GetFunction("run");printf(" run\n");
定义输入输出的变量
printf("Use the C++ API\n");
tvm::runtime::NDArray input = tvm::runtime::NDArray::Empty({1, 1, 640}, DLDataType{kDLFloat, 32, 1}, dev);
tvm::runtime::NDArray input_state = tvm::runtime::NDArray::Empty({1, 2, 128, 2}, DLDataType{kDLFloat, 32, 1}, dev);
tvm::runtime::NDArray output = tvm::runtime::NDArray::Empty({1, 1, 640}, DLDataType{kDLFloat, 32, 1}, dev);
tvm::runtime::NDArray output_state = tvm::runtime::NDArray::Empty({1, 2, 128, 2}, DLDataType{kDLFloat, 32, 1}, dev);
从bin文件中读取数据
float input_storage[1 * 1 * 640];
FILE* fp = fopen("../input.bin", "rb");
fread(input->data, 1 * 1 * 640, 4, fp);
fclose(fp);
float input_state_storage[1 * 2 * 128 * 2];
FILE* fp_state = fopen("../input_state.bin", "rb");
fread(input_state->data, 1 * 2 * 128 * 2, 4, fp_state);
fclose(fp_state);
将数据输入到网络
printf("set the right input\n");
set_input("input_4", input);
set_input("input_5", input_state);
运行推理
struct timeval t0, t1;
int times = 100000; // 3394
gettimeofday(&t0, 0);
printf("run the code\n");
for(int i=0;i<times;i++)
run();
gettimeofday(&t1, 0);
printf("%.5fms\n", ((t1.tv_sec - t0.tv_sec) * 1000 + (t1.tv_usec - t0.tv_usec) / 1000.f)/times);
得到输出
printf("get the output\n");
get_output(0, output);printf(" 0\n");
get_output(1, output_state);printf(" 1\n");
将输出保存到bin文件
FILE* fp_out = fopen("output.bin", "wb");
fwrite(output->data, 1 * 1 * 640, 4, fp_out);
fclose(fp_out);
FILE* fp_out_state = fopen("output_state.bin", "wb");
fwrite(output_state->data, 1 * 2 * 128 * 2, 4, fp_out_state);
fclose(fp_out_state);
numpy与bin文件的互相转换
numpy转bin
import numpy as np
import os
input_1 = np.load("./input.npy")
input_2 = np.load("./input_states.npy")
build_dir = "./"
with open(os.path.join(build_dir, "input.bin"), "wb") as fp:
fp.write(input_1.astype(np.float32).tobytes())
with open(os.path.join(build_dir, "input_state.bin"), "wb") as fp:
fp.write(input_2.astype(np.float32).tobytes())
bin转numpy
output = np.fromfile("./output.bin", dtype=np.float32)
output_state = np.fromfile("./output_state.bin", dtype=np.float32)
使用CMakeLists.txt进行编译
在howto_deploy目录下创建CMakeLists.txt
cmake_minimum_required(VERSION 3.2)
project(how2delploy C CXX)
SET(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} -O3 -Wall -g2 -ggdb")
SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O3 -Wall -fPIC")
set(TVM_ROOT /path/to/tvm)
set(DMLC_CORE ${TVM_ROOT}/3rdparty/dmlc-core)
include_directories(${TVM_ROOT}/include)
include_directories(${DMLC_CORE}/include)
include_directories(${TVM_ROOT}/3rdparty/dlpack/include)
link_directories(${TVM_ROOT}/build/Release)
add_definitions(-DDMLC_USE_LOGGING_LIBRARY=<tvm/runtime/logging.h>)
add_executable(cpp_deploy_norm cpp_deploy.cc)
target_link_libraries(cpp_deploy_norm ${TVM_ROOT}/build/libtvm_runtime.so)
老四连
mkdir build
cd build
cmake ..
make
运行
cd build
./cpp_deploy_norm
【KAWAKO】TVM-使用c++进行推理的更多相关文章
- 使用Tensorize评估硬件内部特性
使用Tensorize评估硬件内部特性 这是有关如何在TVM中执行张量的入门文档. 通过使用调度原语tensorize,人们可以用相应的内部函数代替计算单元,从而轻松利用handcrafted mic ...
- 【翻译】借助 NeoCPU 在 CPU 上进行 CNN 模型推理优化
本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的 "Optimizing CNN Model Inference on CPUs" 原文链接: h ...
- AI推理与Compiler
AI推理与Compiler AI芯片编译器能加深对AI的理解, AI芯片编译器不光涉及编译器知识,还涉及AI芯片架构和并行计算如OpenCL/Cuda等.如果从深度学习平台获得IR输入,还需要了解深度 ...
- 将TVM集成到PyTorch
将TVM集成到PyTorch 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.PyTo ...
- TVM代码生成codegen
TVM代码生成codegen 硬件后端提供程序(例如Intel,NVIDIA,ARM等),提供诸如cuBLAS或cuDNN之类的内核库以及许多常用的深度学习内核,或者提供框架例,如带有图形引擎的DNN ...
- 桥接PyTorch和TVM
桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结 ...
- TVM适配NN编译Compiler缺陷
TVM适配NN编译Compiler缺陷 内容纲要 前言 TVM针对VTA的编译流程 自定义VTA架构:TVM的缺陷与性能瓶颈 TVM缺陷与瓶颈 缺陷一:SRAM配置灵活性差 缺陷二:计算阵列配置僵硬 ...
- TVM优化GPU机器翻译
TVM优化GPU机器翻译 背景 神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力.最近,阿里巴巴集团正在为全球电子商务部署NMT服务. 将Transform ...
- TVM 优化 ARM GPU 上的移动深度学习
TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源 ...
- 端到端TVM编译器(下)
端到端TVM编译器(下) 4.3 Tensorization DL工作负载具有很高的运算强度,通常可以分解为张量运算符,如矩阵乘法或一维卷积.这些自然分解导致了最近的添加张量计算原语.这些新的原语带来 ...
随机推荐
- Devexpress控件searchLookUpEdit获得选中行的其他列数据
使用searchLookUpEdit控件获得选中行的其他列的数据.比如有一列代码列和一列描述.那么我们选中一行后想获得选中的代码和描述.可以在searchLookUpEdit1_EditValueCh ...
- vulnhub靶场之HACKSUDO: THOR
准备: 攻击机:虚拟机kali.本机win10. 靶机:hacksudo: Thor,下载地址:https://download.vulnhub.com/hacksudo/hacksudo---Tho ...
- 推荐一款采用 .NET 编写的 反编译到源码工具 Reko
今天给大家介绍的是一款名叫Reko的开源反编译工具,该工具采用C#开发,广大研究人员可利用Reko来对机器码进行反编译处理.我们知道.NET 7 有了NativeAOT 的支持,采用NativeAOT ...
- MySQL的select for update用法
MySQL中的select for update大家应该都有所接触,但什么时候该去使用,以及有哪些需要注意的地方会有很多不清楚的地方,我把我如何使用和查询到的文档在此记录. 作用 select本身是一 ...
- Go 每日一库之 go-carbon,优雅的golang日期时间处理库
Carbon 是一个轻量级.语义化.对开发者友好的 golang 时间处理库,支持链式调用. Carbon 已被 awesome-go 收录, 如果您觉得不错,请给个 star 吧. github.c ...
- 帮你短时间拿下Git,Git详细教程(浓缩的都是精华)
Git学习笔记 Git是一个开源的分布式版本控制系统,可以有效.高速地处理从很小到非常大的项目版本管理. 在团队开发中git是必不可少的,它是目前为止最流行的版本控制工具 Git是免费.开源的,由Li ...
- MySQL字符编码、存储引擎、严格模式、字段类型之浮点 字符串 枚举与集合 日期类型
目录 字符编码与配置文件 数据路储存引擎 创建表的完整语法 字段类型之整型 严格模式 字段类型之浮点型 字段类型之字符串类型 数字的含义 字段类型之枚举与集合 字段类型之日期类型 字符编码与配置文件 ...
- 命令指定IP端口号
tcping命令是针对tcp监控的,也可以看到ping值,即使源地址禁ping也可以通过tcping来监控服务器网络状态,除了简单的ping之外,tcping最大的一个特点就是可以指定端口. 将下载好 ...
- idea里面连接数据库进行sql操作
常用写法 1. private static void test01() throws ClassNotFoundException, SQLException{ Class.forName(&quo ...
- LeetCode HOT 100:验证二叉搜索树(从左右子树获取信息进行推导)
题目:98. 验证二叉搜索树 题目描述: 给你一个二叉树,让你判断该二叉树是否是二叉搜索树.什么是二叉搜索树呢?就是某一个节点的左子树上的所有节点的值都小于当前节点,右子树上的所有节点值都大于当前节点 ...