【KAWAKO】TVM-使用c++进行推理
前言
在tvm工程的apps目录下,有一个howto_deploy的工程,根据此工程进行修改,可以得到c++推理程序。

修改cpp_deploy.cc文件
DeploySingleOp()函数不需要,直接将其和相关的Verify函数一起删掉。

修改DeployGraphExecutor()函数
读取指定模型,同时获得后面所需的函数
LOG(INFO) << "Running graph executor...";
printf("load in the library\n");
DLDevice dev{kDLCPU, 1};
tvm::runtime::Module mod_factory = tvm::runtime::Module::LoadFromFile("../model_autotune.so");
printf("create the graph executor module\n");
tvm::runtime::Module gmod = mod_factory.GetFunction("default")(dev);printf(" default\n");
tvm::runtime::PackedFunc set_input = gmod.GetFunction("set_input");printf(" set_input\n");
tvm::runtime::PackedFunc get_output = gmod.GetFunction("get_output");printf(" get_output\n");
tvm::runtime::PackedFunc run = gmod.GetFunction("run");printf(" run\n");
定义输入输出的变量
printf("Use the C++ API\n");
tvm::runtime::NDArray input = tvm::runtime::NDArray::Empty({1, 1, 640}, DLDataType{kDLFloat, 32, 1}, dev);
tvm::runtime::NDArray input_state = tvm::runtime::NDArray::Empty({1, 2, 128, 2}, DLDataType{kDLFloat, 32, 1}, dev);
tvm::runtime::NDArray output = tvm::runtime::NDArray::Empty({1, 1, 640}, DLDataType{kDLFloat, 32, 1}, dev);
tvm::runtime::NDArray output_state = tvm::runtime::NDArray::Empty({1, 2, 128, 2}, DLDataType{kDLFloat, 32, 1}, dev);
从bin文件中读取数据
float input_storage[1 * 1 * 640];
FILE* fp = fopen("../input.bin", "rb");
fread(input->data, 1 * 1 * 640, 4, fp);
fclose(fp);
float input_state_storage[1 * 2 * 128 * 2];
FILE* fp_state = fopen("../input_state.bin", "rb");
fread(input_state->data, 1 * 2 * 128 * 2, 4, fp_state);
fclose(fp_state);
将数据输入到网络
printf("set the right input\n");
set_input("input_4", input);
set_input("input_5", input_state);
运行推理
struct timeval t0, t1;
int times = 100000; // 3394
gettimeofday(&t0, 0);
printf("run the code\n");
for(int i=0;i<times;i++)
run();
gettimeofday(&t1, 0);
printf("%.5fms\n", ((t1.tv_sec - t0.tv_sec) * 1000 + (t1.tv_usec - t0.tv_usec) / 1000.f)/times);
得到输出
printf("get the output\n");
get_output(0, output);printf(" 0\n");
get_output(1, output_state);printf(" 1\n");
将输出保存到bin文件
FILE* fp_out = fopen("output.bin", "wb");
fwrite(output->data, 1 * 1 * 640, 4, fp_out);
fclose(fp_out);
FILE* fp_out_state = fopen("output_state.bin", "wb");
fwrite(output_state->data, 1 * 2 * 128 * 2, 4, fp_out_state);
fclose(fp_out_state);
numpy与bin文件的互相转换
numpy转bin
import numpy as np
import os
input_1 = np.load("./input.npy")
input_2 = np.load("./input_states.npy")
build_dir = "./"
with open(os.path.join(build_dir, "input.bin"), "wb") as fp:
fp.write(input_1.astype(np.float32).tobytes())
with open(os.path.join(build_dir, "input_state.bin"), "wb") as fp:
fp.write(input_2.astype(np.float32).tobytes())
bin转numpy
output = np.fromfile("./output.bin", dtype=np.float32)
output_state = np.fromfile("./output_state.bin", dtype=np.float32)
使用CMakeLists.txt进行编译
在howto_deploy目录下创建CMakeLists.txt
cmake_minimum_required(VERSION 3.2)
project(how2delploy C CXX)
SET(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} -O3 -Wall -g2 -ggdb")
SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O3 -Wall -fPIC")
set(TVM_ROOT /path/to/tvm)
set(DMLC_CORE ${TVM_ROOT}/3rdparty/dmlc-core)
include_directories(${TVM_ROOT}/include)
include_directories(${DMLC_CORE}/include)
include_directories(${TVM_ROOT}/3rdparty/dlpack/include)
link_directories(${TVM_ROOT}/build/Release)
add_definitions(-DDMLC_USE_LOGGING_LIBRARY=<tvm/runtime/logging.h>)
add_executable(cpp_deploy_norm cpp_deploy.cc)
target_link_libraries(cpp_deploy_norm ${TVM_ROOT}/build/libtvm_runtime.so)
老四连
mkdir build
cd build
cmake ..
make
运行
cd build
./cpp_deploy_norm
【KAWAKO】TVM-使用c++进行推理的更多相关文章
- 使用Tensorize评估硬件内部特性
使用Tensorize评估硬件内部特性 这是有关如何在TVM中执行张量的入门文档. 通过使用调度原语tensorize,人们可以用相应的内部函数代替计算单元,从而轻松利用handcrafted mic ...
- 【翻译】借助 NeoCPU 在 CPU 上进行 CNN 模型推理优化
本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的 "Optimizing CNN Model Inference on CPUs" 原文链接: h ...
- AI推理与Compiler
AI推理与Compiler AI芯片编译器能加深对AI的理解, AI芯片编译器不光涉及编译器知识,还涉及AI芯片架构和并行计算如OpenCL/Cuda等.如果从深度学习平台获得IR输入,还需要了解深度 ...
- 将TVM集成到PyTorch
将TVM集成到PyTorch 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.PyTo ...
- TVM代码生成codegen
TVM代码生成codegen 硬件后端提供程序(例如Intel,NVIDIA,ARM等),提供诸如cuBLAS或cuDNN之类的内核库以及许多常用的深度学习内核,或者提供框架例,如带有图形引擎的DNN ...
- 桥接PyTorch和TVM
桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结 ...
- TVM适配NN编译Compiler缺陷
TVM适配NN编译Compiler缺陷 内容纲要 前言 TVM针对VTA的编译流程 自定义VTA架构:TVM的缺陷与性能瓶颈 TVM缺陷与瓶颈 缺陷一:SRAM配置灵活性差 缺陷二:计算阵列配置僵硬 ...
- TVM优化GPU机器翻译
TVM优化GPU机器翻译 背景 神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力.最近,阿里巴巴集团正在为全球电子商务部署NMT服务. 将Transform ...
- TVM 优化 ARM GPU 上的移动深度学习
TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源 ...
- 端到端TVM编译器(下)
端到端TVM编译器(下) 4.3 Tensorization DL工作负载具有很高的运算强度,通常可以分解为张量运算符,如矩阵乘法或一维卷积.这些自然分解导致了最近的添加张量计算原语.这些新的原语带来 ...
随机推荐
- 命令查询职责分离 - CQRS
概念 CQRS是一种与领域驱动设计和事件溯源相关的架构模式, 它的全称是Command Query Responsibility Segregation, 又叫命令查询职责分离, Greg Young ...
- 【SQL知识】SQL中的join操作总结:内连接、外连接(左右全)
一.含义 基于表之间的共同字段,把来自两个或多个表的行结合起来 二.分类 内连接:join / inner join 外连接:left join / right join / full outer j ...
- MySQL存储 pymysql模块
目录 pymysql模块 基本使用 cursor=pymysql.cursors.DictCursor 获取数据 fetchall 移动光标 scroll 增删改二次确认 commit autocom ...
- C++可执行文件绝对路径获取与屏蔽VS安全检查
:前言 前几天写新项目需要用到程序所在绝对路径的时候,发现网上居然一点相关分享都没有. :_pgmptr 翻箱倒柜找出了几本教程,发现了一个叫_pgmptr的东西. 进去看了一下,在stdlib.h里 ...
- GeoLayout: Geometry Driven Room Layout Estimation Based on Depth Maps of Planes
1. 论文简介 论文题目:GeoLayout: Geometry Driven Room Layout Estimation Based on Depth Maps of Planes Paper地址 ...
- [图像处理] YUV图像处理入门5
12 yuv420转换为rgb(opencv mat) yuv格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式,而且自己造轮子工作量太大.因此通常都会将yuv转换为rgb, ...
- [深度学习] fast-reid入门教程
fast-reid入门教程 ReID,全拼为Re-identification,目的是利用各种智能算法在图像数据库中找到与要搜索的目标相似的对象.ReID是图像检索的一个子任务,本质上是图像检索而不是 ...
- [常用工具] OpenCV获取网络摄像头实时视频流
所需要硬件及软件环境: python 3/OpenCV3.4 or C++11/OpenCV3.4 1 RTSP协议 RTSP (Real Time Streaming Protocol),是一种语法 ...
- [OpenCV实战]10 使用Hu矩进行形状匹配
目录 1 什么是图像矩? 2 如何计算图像矩 2.1 质心获取 2.2 中心矩 2.3 Hu矩 3 基于Hu矩实现形状匹配 3.1 Hu矩的计算 3.2 基于matchShapes函数计算两个图形之间 ...
- 自己的devc++的语法配置
效果如下