CF917C Pollywog —— 状压DP + 矩乘优化
C. Pollywog
题目描述
原题题目链接。题目大意为:有$x$只蝌蚪,在$n$个石头中的最左端的$x$个石头上,这$n$个石头是在同一直线上的。每一次只能最左边的一个蝌蚪进行跳跃,并且只能跳$1$至$k$步,跳$i$步要花费$c_i$的体力。在蝌蚪跳跃时,是不能跳到已有蝌蚪的石头上。在这$n$个石头里面有$q$个石头是特殊的石头,跳上这$q$个石头中的第$p$个要额外花费$w_p$的体力值。问当所有蝌蚪跳到最右边的$x$个石头时的最小体力值。
思路
首先,根据题意我们能知道所有的蝌蚪都一定在连续的$k$块石头上。现在进行一个小小的证明:假设这些蝌蚪不在连续的$k$块石头上,则最左边的蝌蚪在跳跃时一定会跳在最右边的蝌蚪的左边,不会使最右端点向右移动,但是因为最左边的蝌蚪跳动了,所以最左端点会向右移动,这样的话,区间就会缩短。知道当最左边的蝌蚪和最右边的蝌蚪的距离小于$k$时,才能在向右跳跃时将最右端点向右移动,又因为开始的时候所有的蝌蚪都在最左边的$x$个石头上,所以不会使区间大于$k$。
因此我们就可以处理出来长度为$k$的所有的情况之间的转移。我们定义一个单位元矩阵,$num[i][j]$表示状态为$i$的石头转移成为状态为$j$的石头的花费。什么是状态为$i$的石头呢???我们将$i$转成二进制,这样我们就得到了一个$01$串,在这个$01$串中,$0$表示这个石头上没有蝌蚪,反之$1$表示有蝌蚪。因为我们一共就只需要枚举$k$块石头,并且只有$x$只青蛙,且$k,x \le 8$,所以最多就只有$C_8^4$种情况,将二进制串离散一下就好了。这就是预处理。
我们得到了一个转移的邻接矩阵,我们就可以用这个矩阵来进行矩乘,先不考虑特殊的石头,所以就计算这个矩阵的$n-x$次幂就可以,$n-x$次幂的意思是,每一次都将当前$k$块石头向右进行移动一块石头,这样移动$n-x$次就是答案,但是特殊的石头要更改答案,所以我们到达一块特殊的石头,就停下来暴力就可以了。我们知道一块特殊的石头只能对$k$个转移带来影响。所以我们暴力停下来转移是可以的,时间复杂的是$O(k^2 \times q \times C_k^x)$。
代码
#include <cstdio>
#include <algorithm>
using namespace std;
#define inf 1e18
#define N 10
int x,k,n,q,cnt;long long num[N];int bel[1<<10];
struct Square
{
long long num[71][71];
Square()
{for(int i=1;i<=70;i++) {for(int j=1;j<=70;j++) num[i][j]=inf;num[i][i]=0;}}
Square operator * (const Square &a) const
{
Square tmp;
for(int i=1;i<=cnt;i++)
tmp.num[i][i]=inf;
for(int i=1;i<=cnt;i++)
for(int j=1;j<=cnt;j++)
for(int k=1;k<=cnt;k++)
tmp.num[i][j]=min(tmp.num[i][j],num[i][k]+a.num[k][j]);
return tmp;
}
Square operator ^ (const int &x)
{
if(!x) return Square();
Square tmp,tmp1;int times=x;
for(int i=1;i<=cnt;i++)
for(int j=1;j<=cnt;j++) tmp1.num[i][j]=num[i][j];
while(times) {if(times&1) tmp=tmp*tmp1;times>>=1;tmp1=tmp1*tmp1;}
return tmp;
}
}one;
struct Stone
{int place;long long val;}stone[30];
bool calc(int tmp)
{
int many=0;
for(int i=1;i<=8;i++) if(tmp&(1<<(i-1))) many++;
return many==x;
}
bool cmp(const Stone &a,const Stone &b)
{return a.place<b.place;}
int main()
{
scanf("%d%d%d%d",&x,&k,&n,&q);
for(int i=0;i<=(1<<k)-1;i++) if(calc(i)) bel[i]=++cnt;
for(int i=1;i<=k;i++) scanf("%lld",&num[i]);
for(int i=1;i<=q;i++) scanf("%d%lld",&stone[i].place,&stone[i].val);
sort(stone+1,stone+q+1,cmp);
for(int i=1;i<=cnt;i++) one.num[i][i]=inf;
for(int i=1;i<=(1<<k)-1;i++)
{
if(!bel[i]) continue;
if(i&1)
{for(int j=1;j<=k;j++)
{if(!((1<<j)&i)) one.num[bel[i]][bel[((1<<j)|i)>>1]]=num[j];}}
else one.num[bel[i]][bel[i>>1]]=0;
}
int now=1;long long sum=0;Square ans;
for(int i=1;i<=q;i++)
{
if(stone[i].place>n-x) {sum+=stone[i].val;continue;}
ans=ans*(one^(stone[i].place-now)),now=stone[i].place;
for(int j=1;j<=(1<<k)-1;j+=2)
if(bel[j])
for(int k=1;k<=cnt;k++)
ans.num[k][bel[j]]+=stone[i].val;
}
ans=ans*(one^(n-x+1-now));
printf("%lld",ans.num[1][1]+sum);
}
CF917C Pollywog —— 状压DP + 矩乘优化的更多相关文章
- T2988 删除数字【状压Dp+前缀和优化】
Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...
- 你必须知道的基本位运算技巧(状压DP、搜索优化都会用到)
一. 位操作基础 基本的位操作符有与.或.异或.取反.左移.右移这6种,它们的运算规则如下所示: 符号 描述 运算规则 & 与 两个位都为1时,结果才为1 | 或 两个位都为0时,结果才为0 ...
- 状压DP复习笔记
前言 复习笔记第4篇.CSP RP++. 引用部分为总结性内容. 0--P1433 吃奶酪 题目链接 luogu 题意 房间里放着 \(n\) 块奶酪,要把它们都吃掉,问至少要跑多少距离?一开始在 \ ...
- Codeforces 917C - Pollywog(状压 dp+矩阵优化)
UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...
- bzoj2004 矩阵快速幂优化状压dp
https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z ...
- POJ1038 Bugs Integrated, Inc 状压DP+优化
(1) 最简单的4^10*N的枚举(理论上20%) (2) 优化优化200^3*N的枚举(理论上至少50%) (3) Dfs优化状压dp O(我不知道,反正过不了,需要再优化)(理论上80%) (4) ...
- 【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra
题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个 ...
- NOJ 1116 哈罗哈的大披萨 【淡蓝】 [状压dp+各种优化]
我只能说,珍爱生命,远离卡常数的题...感谢陈老师和蔡神,没有他们,,,我调一个星期都弄不出来,,,, 哈罗哈的大披萨 [淡蓝] 时间限制(普通/Java) : 1000 MS/ 3000 MS ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
随机推荐
- Apache虚拟主机测试
一.虚拟机主机简介 部署多个站点,每个站点,希望用不同的域名和站点目录,或者是不同的端口,或不同的ip,就需要虚拟主机功能.简单的说一个http服务要配置多个站点,就需要虚拟主机.(一句话一个http ...
- Kubernetes配置Ceph RBD StorageClass
1. 在Ceph上为Kubernetes创建一个存储池 # ceph osd pool create k8s 2. 创建k8s用户 # ceph auth get-or-create client.k ...
- Python 代码优化技巧(一)
Table of Contents 1. 代码优化Part1 1.1. if 判断的短路特性 1.2. join 合并字符串 1.3. while 1 和 while True 1.4. cProfi ...
- TCP/IP网络编程之进程间通信
进程间通信基本概念 进程间通信意味着两个不同进程间可以交换数据,为了完成这一点,操作系统中应提供两个进程可以同时访问的内存空间.但我们知道,进程具有完全独立的内存结构,就连通过fork函数创建的子进程 ...
- 了解Windows Server以及Hyper-V许可模式
在2015年11月,微软宣布对Windows Server 2016以及Hyper-V的许可模式进行重大变更,并于2016年第三季度正式生效,Windows Server 2016标准版及数据中心版的 ...
- Html语言的标签讲解
一.head头部中的内容: 1.<meta charset="UTF-8"> <--!告诉浏览器什么编码--> 2.<meta http-equiv= ...
- 实战小项目之RTMP流媒体演示系统
项目简介 windows下使用基于Qt对之前的RtmpApp进行封装与应用,单独功能使用线程执行,主要包括以下几个功能: 视频下载 推送文件 推送摄像头数据或者桌面 基于libvlc的播放器 视频下载 ...
- java中json依赖包
Exception in thread "main" java.lang.NoClassDefFoundError: org/jaxen/JaxenException 上面的是do ...
- 多IP指定出口IP地址 如何指定云服务器源IP?
如果一个主机绑定有多个IP地址,那么在被动响应和主动发起连接两种方式中,源IP地址的选择机制肯定是有所差异的.主机在接收外部数据包,并发送响应数据包时,响应源地址显然就是客户端请求的地址,这是非常容易 ...
- [HDU3516] Tree Construction [四边形不等式dp]
题面: 传送门 思路: 这道题有个结论: 把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left ...