【BZOJ4407】于神之怒加强版 莫比乌斯反演
【BZOJ4407】于神之怒加强版
Description

Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
题解:如何快速推出线性筛的递推式呢?——打表。
发现f(D)长得跟$\varphi(D)$差不多?所以递推式也差不多
$f(i*pj)=\begin{cases}& f(i)*(pj^k-1) & i\%pj!=0 \\ & f(i)*pj^k & i\%pj==0\end{cases}$
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=5000000;
int T,k,num;
int pri[N];
ll f[N+10],sf[N+10],pk[N],ans;
bool np[N+10];
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
void init()
{
int i,j;
f[1]=sf[1]=1;
for(i=2;i<=N;i++)
{
if(!np[i]) pri[++num]=i,pk[num]=pm(i,k),f[i]=pk[num]-1;
sf[i]=sf[i-1]+f[i];
for(j=1;j<=num&&i*pri[j]<=N;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
f[i*pri[j]]=f[i]*pk[j]%mod;
break;
}
f[i*pri[j]]=f[i]*(pk[j]-1)%mod;
}
}
}
void work()
{
int n,m,i,last;
ans=0;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=(ans+(sf[last]-sf[i-1])*(n/i)%mod*(m/i)%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
int main()
{
scanf("%d%d",&T,&k);
init();
while(T--) work();
return 0;
}
【BZOJ4407】于神之怒加强版 莫比乌斯反演的更多相关文章
- BZOJ4407 于神之怒加强版 - 莫比乌斯反演
题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- luogu4449 于神之怒加强版(莫比乌斯反演)
link 给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果 多组数据,T<=2000,1<=N,M,K&l ...
随机推荐
- 2-sat 问题 【例题 Flags(2-sat+线段树优化建图)】
序: 模拟赛考了一道 2-sat 问题.之前从来没听过…… 考完才发现其实这个东东只要一个小小的 tarjan 求强连通分量就搞定了. 这个方法真是巧妙啊,拿来讲讲. What is it? [・_・ ...
- POJ 2228 naptime
环形DP 先考虑如果只是一天,我们可以用线性DP写出转移方程,注意初始化 如果是一个环的话,我们发现少了一种第n天和第一天连起来的情况,那么我们就再进行一次DP 强制这种情况 #include < ...
- Mysql多列索引实践
在网上看到: 定义:最左前缀原则指的的是在sql where 子句中一些条件或表达式中出现的列的顺序要保持和多索引的一致或以多列索引顺序出现,只要 出现非顺序出现.断层都无法利用到多列索引. 该博文有 ...
- es6总结(七)--proxy & reflect
- 转 Vim操作
传送门 vim全局替换命令 语法为 :[addr]s/源字符串/目的字符串/[option]全局替换命令为::%s/源字符串/目的字符串/g [addr] 表示检索范围,省略时表示当前行.如:“1 ...
- 12深入理解C指针之---指针多层间接引用
该系列文章源于<深入理解C指针>的阅读与理解,由于本人的见识和知识的欠缺可能有误,还望大家批评指教. 一.指针多层引用 1.定义:指针可以用不同的间接引用层级,通常使用多重指针或字符数组来 ...
- AC日记——[SCOI2010]游戏 bzoj 1854
1854: [Scoi2010]游戏 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 4938 Solved: 1948[Submit][Status] ...
- luogu P1018 乘积最大
题目描述 今年是国际数学联盟确定的"2000――世界数学年",又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一 ...
- hadoop之hdfs及其工作原理
hadoop之hdfs及其工作原理 (一)hdfs产生的背景 随着数据量的不断增大和增长速度的不断加快,一台机器上已经容纳不下,因此就需要放到更多的机器中,但这样做不方便维护和管理,因此需要一种文件系 ...
- fastdfs-zyc监控系统的使用
原文:http://blog.csdn.net/foreversunshine/article/details/51907659 写在前面 前面有介绍过怎么安装与使用FastDFS来进行分布式的文件存 ...