【BZOJ4407】于神之怒加强版 莫比乌斯反演
【BZOJ4407】于神之怒加强版
Description

Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
题解:如何快速推出线性筛的递推式呢?——打表。

发现f(D)长得跟$\varphi(D)$差不多?所以递推式也差不多
$f(i*pj)=\begin{cases}& f(i)*(pj^k-1) & i\%pj!=0 \\ & f(i)*pj^k & i\%pj==0\end{cases}$
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=5000000;
int T,k,num;
int pri[N];
ll f[N+10],sf[N+10],pk[N],ans;
bool np[N+10];
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
void init()
{
int i,j;
f[1]=sf[1]=1;
for(i=2;i<=N;i++)
{
if(!np[i]) pri[++num]=i,pk[num]=pm(i,k),f[i]=pk[num]-1;
sf[i]=sf[i-1]+f[i];
for(j=1;j<=num&&i*pri[j]<=N;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
f[i*pri[j]]=f[i]*pk[j]%mod;
break;
}
f[i*pri[j]]=f[i]*(pk[j]-1)%mod;
}
}
}
void work()
{
int n,m,i,last;
ans=0;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=(ans+(sf[last]-sf[i-1])*(n/i)%mod*(m/i)%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
int main()
{
scanf("%d%d",&T,&k);
init();
while(T--) work();
return 0;
}
【BZOJ4407】于神之怒加强版 莫比乌斯反演的更多相关文章
- BZOJ4407 于神之怒加强版 - 莫比乌斯反演
题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- luogu4449 于神之怒加强版(莫比乌斯反演)
link 给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果 多组数据,T<=2000,1<=N,M,K&l ...
随机推荐
- 洛谷 [P3008] 道路与航线
最短路 因为有负权边,所以不能 dijkstra ,本题数据还卡 SPFA 但是我们发现,有负权的都是有向边,而且如果把无向边连成的联通块看成一个点的话,有向边就连成了一个 DAG,所以我们可以对所有 ...
- Oracle 的安装与使用
一.文件下载 安装的是Oracle 11G,安装文件名为OracleXE112_Win32.zip, 官方文件下载地址:http://www.oracle.com/technetwork/databa ...
- Adoquery的 moveby和GotoBookmark,RecNo
GotoBookmark 是必须存在的记录,再次返回原来那个记录的位置,但是原来的那个记录必须存在,所以不适合[删除订单后回到原来的位置],因为原来的订单已经不存在了,删除了, moveby(),从当 ...
- Presto查询引擎简单分析
Hive查询流程分析 各个组件的作用 UI(user interface)(用户接口):提交数据操作的窗口Driver(引擎):负责接收数据操作,实现了会话句柄,并提供基于JDBC / ODBC的ex ...
- Sping、SpringMVC、SpringBoot的对比
原文链接:https://dzone.com/articles/spring-boot-vs-spring-mvc-vs-spring-how-do-they-compare 作者: Ranga Ka ...
- 分享Kali Linux 2017年第11周镜像文件
分享Kali Linux 2017年第11周镜像文件 Kali?Linux官方于3月12日发布2017年的第11周镜像.这次维持了11个镜像文件的规模.默认的Gnome桌面的4个镜像,E17.KDE ...
- luogu P3402 最长公共子序列
题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作 ...
- CF768
Codeforces Round #406 (Div. 1) A.Berzerk 考虑先手必胜态,一定是先手移动到某一个位置以后,这个位置是后手的必败态 考虑先手必败态,一定是无论先手如何移动,先手所 ...
- webstorm 2016 激活破解
2017.2.27更新 选择“license server” 输入:http://idea.imsxm.com/ 2016.2.2 版本的破解方式: 安装以后,打开软件会弹出一个对话框:选择“lice ...
- 邁向IT專家成功之路的三十則鐵律 鐵律四:IT人快速成長之道-複製
相信您一定看到過現今有許多各行各業的成功人士,他們最初都是從複製別人的成功經驗開始的,就算是一位知名的歌手,有許多都是在未成名以前,先行模仿知名歌手的唱腔.舞蹈.服裝等等開始的,然後在慢慢經過自我努力 ...