【BZOJ4407】于神之怒加强版 莫比乌斯反演
【BZOJ4407】于神之怒加强版
Description

Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
题解:如何快速推出线性筛的递推式呢?——打表。

发现f(D)长得跟$\varphi(D)$差不多?所以递推式也差不多
$f(i*pj)=\begin{cases}& f(i)*(pj^k-1) & i\%pj!=0 \\ & f(i)*pj^k & i\%pj==0\end{cases}$
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=5000000;
int T,k,num;
int pri[N];
ll f[N+10],sf[N+10],pk[N],ans;
bool np[N+10];
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
void init()
{
int i,j;
f[1]=sf[1]=1;
for(i=2;i<=N;i++)
{
if(!np[i]) pri[++num]=i,pk[num]=pm(i,k),f[i]=pk[num]-1;
sf[i]=sf[i-1]+f[i];
for(j=1;j<=num&&i*pri[j]<=N;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
f[i*pri[j]]=f[i]*pk[j]%mod;
break;
}
f[i*pri[j]]=f[i]*(pk[j]-1)%mod;
}
}
}
void work()
{
int n,m,i,last;
ans=0;
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=(ans+(sf[last]-sf[i-1])*(n/i)%mod*(m/i)%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
int main()
{
scanf("%d%d",&T,&k);
init();
while(T--) work();
return 0;
}
【BZOJ4407】于神之怒加强版 莫比乌斯反演的更多相关文章
- BZOJ4407 于神之怒加强版 - 莫比乌斯反演
题解 非常裸的莫比乌斯反演. 但是反演完还需要快速计算一个积性函数(我直接用$nlogn$卷积被TLE了 推荐一个博客 我也不想再写一遍了 代码 #include<cstring> #in ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- luogu4449 于神之怒加强版(莫比乌斯反演)
link 给定n,m,k,计算\(\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k\)对1000000007取模的结果 多组数据,T<=2000,1<=N,M,K&l ...
随机推荐
- 2017.8.2 Noip2018模拟测试赛(十八)
日期: 八月二日 总分: 300分 难度: 提高 ~ 省选 得分: 40分(又炸蛋了!!) 题目列表: T1:分手是祝愿 T2:残缺的字符串 T3:树点涂色 赛后心得: 哎,T1求期望,放弃. ...
- Spring定义的五种事务隔离级别
在Spring中定义了5中不同的事务隔离级别. 1. ISOLATION_DEFAULT(一般情况下使用这种配置既可) 这是一个PlatfromTransactionManager默认的隔离级别,使用 ...
- 【Codevs1993】草地排水(最大流,Dinic)
题意:在农夫约翰的农场上,每逢下雨,Bessie最喜欢的三叶草地就积聚了一潭水.这意味着草地被水淹没了,并且小草要继续生长还要花相当长一段时间.因此,农夫约翰修建了一套排水系统来使贝茜的草地免除被大水 ...
- DataSet的Merge方法合并两张表
原文发布时间为:2008-08-01 -- 来源于本人的百度文章 [由搬家工具导入] UniqueConstraint uc = new UniqueConstraint("pk" ...
- 反汇编->C++引用与指针
先看一段最简单代码 #include<iostream> #include<stdlib.h> using namespace std; int main() { int te ...
- Java 异常处理的优劣
Java编程中的异常处理是一个很常见的话题了,几乎任何一门介绍性的Java课程都会提到异常处理.不过,我认为很多人其实没有真正掌握正确处理异常情况的方法和策略,最多也就不过了解个大概,知道概念.我想对 ...
- liteos事件(六)
1. 概述 1.1 基本概念 事件是一种实现任务间通信的机制,可用于实现任务间的同步,但事件通信只能是事件类型的通信,无数据传输.一个任务可以等待多个事件的发生:可以是任意一个事件发生时唤醒任务进行事 ...
- 洛谷—— P2895 [USACO08FEB]流星雨Meteor Shower
P2895 [USACO08FEB]流星雨Meteor Shower 题目描述 Bessie hears that an extraordinary meteor shower is coming; ...
- Xamarin.Forms的相对布局RelativeLayout
Xamarin.Forms的相对布局RelativeLayout 相对布局RelativeLayout是App中常用的布局方式.它是以界面中的某个元素为基准,设置另外一个元素的位置和大小.通过这种 ...
- The 2016 ACM-ICPC Asia China-Final Contest Promblem D
显然答案具有单调性,可以二分.问题是 我们二分出一个 堆数,该怎么判定能否达到这个堆数呢? 我们可以很简单的用调整法证明,最底下的一层的冰淇淋肯定是最小的那些,往上叠加的话我们再贪心的让较少的放在较小 ...