POJ.3537.Crosses and Crosses(博弈论 Multi-SG)
\(Description\)
有一个一行n列的棋盘,每个人每次往上放一个棋子,将三个棋子连在一起的人赢。问是否有必胜策略。
\(Solution\)
首先一个人若在\(i\)处放棋子,那么另一个人就不能在\(i-2,i-1,i+1,i+2\)处放石子,这样会使对方赢。
那么可以看做:在\(i\)处放棋子后,另一个人不能选择\(i-2,i-1,i+1,i+2\)处放石子,不能放的人输。
可以联想到Nim游戏,一个人取一个石子,另一个人可取石子\(-2\);同时是产生两个局面
即1*n的棋盘上 在i处放棋子,会将游戏划分成\(s(i-3)+s(n-i-2)\)两个游戏
那这就是Multi-SG游戏,用SG函数解决。
记忆化,\(O(n^2)\).
Multi-SG游戏:
详细见这
Def: 在符合拓扑原则的前提下,一个单一游戏的后继可以为多个单一游戏。其余规则与SG游戏相同。
对于一个单一游戏,不同方法可能会将其划分为多个单一游戏。每一方法对应的多个单一游戏的(异或)和即可表示这种方法的NP状态。
而这个单一游戏的SG值为其所有方法的SG值的mex
//1692K 266MS
#include <cstdio>
#include <cstring>
const int N=2002;
int n,sg[N];
int Get_SG(int x)
{
if(x<0) return 0;
if(~sg[x]) return sg[x];
bool vis[N];
memset(vis,0,sizeof vis);
for(int i=1; i<=x; ++i)//放所有位置都是子局面
vis[Get_SG(i-3)^Get_SG(x-i-2)]=1;//x为偶数时会有重 不过记忆化 无妨
for(int i=0; ; ++i)
if(!vis[i]) return sg[x]=i;
}
int main()
{
while(~scanf("%d",&n))
memset(sg,0xff,sizeof sg), puts(Get_SG(n)?"1":"2");
return 0;
}
POJ.3537.Crosses and Crosses(博弈论 Multi-SG)的更多相关文章
- poj 3537 Crosses and Crosses 博弈论之grundy值
题意: 给1*n的格子,轮流在上面叉叉,最先画得3个连续叉叉的赢.问先手必胜还是必败. 分析: 求状态的grundy值(也就是sg值),详细怎么求详见代码.为什么这么求要自己想的,仅仅可意会(别人都说 ...
- 【POJ】【3537】Crosses and Crosses
博弈论 相当于放了x的位置,左右4格都不能再放x了,谁无处可放就输. n<=2000 直接枚举后继状态,暴力求SG函数即可. 例: 0000000->x..0000 / .x..000 / ...
- POJ 3537 Crosses and Crosses
Crosses and Crosses Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 2237 Accepted: 821 Ca ...
- poj 3575 Crosses and Crosses(SG函数)
Crosses and Crosses Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3063 Accepted: 11 ...
- POJ 3537 Crosses and Crosses (NEERC)
Crosses and Crosses Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 4 ...
- POJ 3537 multi-sg 暴力求SG
长为n的一列格子,轮流放同种棋子,率先使棋子连成3个者胜. 可以发现每次放一个棋子后,后手都不能放在[x-2,x+2]这个区间,那么相当于每次放棋将游戏分成了两个,不能放棋者败. 暴力求SG即可 /* ...
- [poj3537]Crosses and Crosses_博弈论
Crosses and Crosses poj-3537 题目大意:给定一个1*n的网格,每次往格子内填一个$\times$,连续的三个即可获胜. 注释:$1\le n\le 2000$. 想法:我们 ...
- POJ 2425 A Chess Game 博弈论 sg函数
http://poj.org/problem?id=2425 典型的sg函数,建图搜sg函数预处理之后直接求每次游戏的异或和.仍然是因为看不懂题目卡了好久. 这道题大概有两个坑, 1.是搜索的时候vi ...
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
- [poj 3537]Crosses and Crosses(博弈论)
题目:http://poj.org/problem?id=3537 题意:给你n个格子,两个人依次在n个格子的任意空位置画"X",谁如果画了一个后,3个X连在了一起,那么那个人就获 ...
随机推荐
- 在手机的浏览器上通过连接打开App
Android系统中实现 1.在系统系统自带的浏览器中 首先做成HTML的页面,页面内容格式如下: <a href="[scheme]://[host]/[path]?[query]& ...
- manjaro 的配置
一.更新源的配置: 1).自动方法: 在 终端 执行下面的命令从官方的源列表中对中国源进行测速和设置 sudo pacman-mirrors -c China 2).手动方法 自动方法(上面的方法1, ...
- SharePoint 2013 Workflow Manager 1.0 卸载
一:环境 Window server 2012 r2 Standard SharePoint Server 2013 with sp1 二:开始菜单---Workflow Manager 配置---退 ...
- Oracle 正则表达式函数-REGEXP_REPLACE
背景 当初写oracle的一个存储过程,以前不知道sql里也有正则表达式,关于正则表达式教程很多了,这里只是记录下Oracle也有这个功能,下次再有类似需求用这个处理的确方便很多. 想起存储过程,就想 ...
- Java中强、软、弱、虚引用
1.强引用(StrongReference) 强引用是使用最普遍的引用.如果一个对象具有强引用,那垃圾回收器绝不会回收它.当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使 ...
- collectd+influxDB+Grafana搭建性能监控平台
网上查看了很多关于环境搭建的文章,都比较久远了很多安装包源都不可用了,今天收集了很多资料组合尝试使用新版本来搭建,故在此记录. 采集数据(collectd)-> 存储数据(influxdb) - ...
- 《转》Pragma: no-cache 对性能的影响
做了下go和java的http性能的简单比较服务端直接输出字符串使用JMeterwindows下 2000的并发,测试结果很出乎意料,go不会这么差吧 研究了半小时,原因如下tomcat的servl ...
- GDIPlus非典型误用一例
// ** 初始化GDI+ Gdiplus::GdiplusStartupInput gdiplusStartupInput; // ** 该成员变量用来保存GDI+被初始化后在应用程序中的GDI+标 ...
- springbank 开发日志 阅读spring mvc的源代码真是受益良多
决定模仿spring mvc的dispatcher->handlerMapping(return executorChain)->handler.execute 这样的流程之后,就开始看s ...
- Maven多模块项目
1.项目结构-父项目 其中parent是父项目,这个父项目的父项目是springboot,我搭建这个多模块的项目的目的主要是为了研究学习springbatch 父项目的pom文件内容: <pro ...