【PKUSC2018】最大前缀和
- 上午的国庆大阅兵有意思
Description
Solution
看数据范围认解法
首先在每种情况出现概率相同的情况下, \(期望 \times 方案数 = 权值和\),即题意就是让你求所有排列的最大前缀和的总和……
我们可以枚举哪些数是最大前缀,显然这些数内部任意交换顺序、其它数内部任意交换顺序 都不会改变这个最大前缀。
一些数要排到前面去成为最大前缀,条件是该前缀除整段外的所有后缀和 \(\gt 0\)(因为最大前缀长度不能是 \(0\)),后面的所有前缀和 \(\le 0\)。
(一个 \(\gt 0\),一个 \(\le 0\) 是因为对于一种排列,若有多个前缀和均为最大,我们只根据最短的前缀统计一次该排序。也可以根据最长的前缀,即一个 \(\ge 0\),一个 \(\lt 0\))
设 \(f(i)\) 表示集合 \(i\) 的数有多少种排列满足所有后缀和 \(\gt 0\),\(g(i)\) 表示集合 \(i\) 的数有多少种排列满足所有前缀和 \(\le 0\)。
\(f\) 的转移是每次往前加一个数,\(g\) 的转移是每次往后加一个数。加一个数只需要判断一下新后/前缀和是否满足条件。
最后把 \(f\) 和 \(g\) 卷起来就好了。
#include<bits/stdc++.h>
#define ll long long
#define N 1048580
#define mod 998244353
using namespace std;
inline int read(){
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c); c=getchar()) if(c=='-') f=0;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x; return 0-x;
}
int n,nn,f[N],g[N],ans; ll sum[N];
inline int lowbit(int x) {return x&-x;}
inline void upd(int &x, int y) {x = (x+y) % mod;}
int main(){
n=read(), nn=(1<<n)-1;
for(int i=0; i<n; ++i) sum[1<<i]=read();
for(int i=1; i<=nn; ++i){
int x=lowbit(i);
if(i^x) sum[i]=sum[i^x]+sum[x];
}
for(int i=0; i<n; ++i) f[1<<i]=1;
for(int i=1; i<=nn; ++i) if(sum[i]>0)
for(int j=0; j<n; ++j) if((i&(1<<j))==0)
upd(f[i^(1<<j)], f[i]);
//for(int i=0; i<=nn; ++i) cout<<f[i]<<' '; cout<<endl;
g[0]=1;
for(int i=0; i<=nn; ++i)
for(int j=0; j<n; ++j) if((i&(1<<j))==0 && sum[i^(1<<j)]<=0)
upd(g[i^(1<<j)], g[i]);
//for(int i=0; i<=nn; ++i) cout<<g[i]<<' '; cout<<endl;
for(int i=1; i<=nn; ++i)
upd(ans, (ll)f[i]*g[nn^i]%mod*((sum[i]%mod+mod)%mod)%mod);
cout<<ans<<endl;
return 0;
}
【PKUSC2018】最大前缀和的更多相关文章
- [PKUSC2018]最大前缀和
[PKUSC2018]最大前缀和 题目大意: 有\(n(n\le20)\)个数\(A_i(|A_i|\le10^9)\).求这\(n\)个数在随机打乱后最大前缀和的期望值与\(n!\)的积在模\(99 ...
- BZOJ_5369_[Pkusc2018]最大前缀和_状压DP
BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...
- [PKUSC2018]最大前缀和——状压DP
题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...
- LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】
题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...
- BZOJ5369:[PKUSC2018]最大前缀和(状压DP)
Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...
- BZOJ5369 [Pkusc2018]最大前缀和
题意 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C是一个非常有自知之 ...
- bzoj 5369: [Pkusc2018]最大前缀和
Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...
- [PKUSC2018]最大前缀和(DP)
题意:求一个序列随机打乱后最大前缀和的期望. 考场上发现不管怎么设状态都写不出来,实际上只要稍微转换一下就好了. 一个前缀[1..k]是最大前缀,当且仅当前面的所有后缀[k-1,k],[k-2,k], ...
- P5369 [PKUSC2018]最大前缀和
状态压缩 P5369 题意:求所有排列下的最大前缀和之和 一步转化: 求最大前缀和的前缀由数集S组成的方案数, 统计答案时直接乘上sum(S)即可 考虑最大前缀和的性质: 设最大前缀和为sum[i] ...
- 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)
点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...
随机推荐
- 第二章 kali安装
@kali安装 本文以虚拟机进行安装(注意:虚拟机安装不等同于物理机安装,在虚拟机安装成功不等于一定能在物理机,U盘安装成功) 下载kali镜像 官方地址:https://www.kali.org/d ...
- python-Web-django-商城-session存入数据库
utils: '''用户session''' import datetime from app01.models import Sessions ''' iii = request.session.s ...
- bug解决思路——插入数据时,前台不展示数据
积攒一下平时解决bug时的思路,以后若是一头乱麻时翻出来看看~ 一个bug五一之前就和现场在定位,直到今天才算是定位到问题. 所有bug,还是得重现出来才可以发现问题.现场说登记记录时数据没在前台展示 ...
- Python学习笔记——集合
1. 定义 num = {} print(type(num)) num2 = {1,2,3,4,5} print(type(num2)) <class 'dict'> <class ...
- 前端内容之CSS层叠样式表
CSS(Cascading Style Sheet层叠样式表) 把HTML认为是网页的骨架 那么CSS就是用于对HTML骨架进行修饰,比如加背景色.显示方式.位置等等属性 CSS语法形式: 一个完整的 ...
- 项目使用Hbase进行数据快速查询的代码案例
之前项目中对于数据详情的查询使用的ddb技术,由于成本过高,现考虑使用开源的hbase框架,借此机会进行hbase的代码案例记录,之前已经对 hbase的原理进行介绍,介绍了hbase中的rowkey ...
- 消息中间件RabbitMq的代码使用案例
消费者: ---------------------- 构造初始化: public RabbitMqReceiver(String host, int port, String username, S ...
- array_merge与数组加
array_merge() 索引数组:值不会覆盖,会重新索引; 关联数组:相同的键名,则最后的元素会覆盖其他元素. 数组+ 以左为主,按键加; Array ( [0] => A006 ) + A ...
- Docker——网络和存储(数据卷)
iptables -t nat -vnL |grep docker 查看docker桥接网卡:brctl show 本地端口随机映射到docker容器的80端口上: docker run -d -P ...
- 安装consul
概述consul是google开源的一个使用go语言开发的服务发现.配置管理中心服务.内置了服务注册与发现框架.分布一致性协议实现.健康检查.Key/Value存储.多数据中心方要依赖其他工具(比如Z ...