详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytpo8

ReentrantLock和内部锁的性能对比

    ReentrantLock是jdk5引入的新的锁机制,它与内部锁(synchronize) 相同的并发性和内存语义,比如可重入加锁语义。在中等或者更高负荷下,ReentrantLock有更好的性能,并且拥有可轮询和可定时的请求锁等高级功能。这个程序简单对比了ReentrantLock公平锁、ReentrantLock非公平锁以及内部锁的性能,从结果上看,非公平的ReentrantLock表现最好。内部锁也仅仅是实现统计意义上的公平,结果也比公平的ReentrantLock好上很多。这个程序仅仅是计数,启动N个线程,对同一个Counter进行递增,显然,这个递增操作需要同步以保证原子性,采用不同的锁来实现同步,然后查看结果。

Counter接口:

package net.rubyeye.concurrency.chapter13;

public interface Counter {

    public long getValue();

public void increment();

}

然后,首先使用我们熟悉的synchronize来实现同步:

package net.rubyeye.concurrency.chapter13;

public class SynchronizeBenchmark implements Counter {

    private long count = 0;

public long getValue() {

        return count;

    }

public synchronized void increment() {

        count++;

    }

}

采用ReentrantLock的版本,切记要在finally中释放锁,这是与synchronize使用方式最大的不同,内部锁jvm会自动帮你释放锁,而ReentrantLock需要你自己来处理。

package net.rubyeye.concurrency.chapter13;

import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;

public class ReentrantLockBeanchmark implements Counter {

private volatile long count = 0;

private Lock lock;

public ReentrantLockBeanchmark() {

        // 使用非公平锁,true就是公平锁

        lock = new ReentrantLock(false);

    }

public long getValue() {

        // TODO Auto-generated method stub

        return count;

    }

public void increment() {

        lock.lock();

        try {

            count++;

        } finally {

            lock.unlock();

        }

    }

}

写一个测试程序,使用CyclicBarrier来等待所有任务线程创建完毕以及所有任务线程计算完成,清单如下:

package net.rubyeye.concurrency.chapter13;

import java.util.concurrent.CyclicBarrier;

public class BenchmarkTest {

    private Counter counter;

private CyclicBarrier barrier;

private int threadNum;

public BenchmarkTest(Counter counter, int threadNum) {

        this.counter = counter;

        barrier = new CyclicBarrier(threadNum + 1); //关卡计数=线程数+1

        this.threadNum = threadNum;

    }

public static void main(String args[]) {

        new BenchmarkTest(new SynchronizeBenchmark(), 5000).test();

        //new BenchmarkTest(new ReentrantLockBeanchmark(), 5000).test();

        //new BenchmarkTest(new ReentrantLockBeanchmark(), 5000).test();  

    }

public void test() {

        try {

            for (int i = 0; i < threadNum; i++) {

                new TestThread(counter).start();

            }

            long start = System.currentTimeMillis();

            barrier.await(); // 等待所有任务线程创建

            barrier.await(); // 等待所有任务计算完成

            long end = System.currentTimeMillis();

            System.out.println("count value:" + counter.getValue());

            System.out.println("花费时间:" + (end - start) + "毫秒");

        } catch (Exception e) {

            throw new RuntimeException(e);

        }

    }

class TestThread extends Thread {

        private Counter counter;

public TestThread(final Counter counter) {

            this.counter = counter;

        }

public void run() {

            try {

                barrier.await();

                for (int i = 0; i < 100; i++)

                    counter.increment();

                barrier.await();

            } catch (Exception e) {

                throw new RuntimeException(e);

            }

        }

    }

}

分别测试一下,

将启动的线程数限定为500,结果为:

公平ReentrantLock:      210 毫秒

非公平ReentrantLock :   39  毫秒

内部锁:                          39 毫秒

将启动的线程数限定为1000,结果为:

公平ReentrantLock:      640 毫秒

非公平ReentrantLock :   81 毫秒

内部锁:                           60 毫秒

线程数不变,test方法中的循环增加到1000次,结果为:

公平ReentrantLock:      16715 毫秒

非公平ReentrantLock :   168 毫秒

内部锁:                           639  毫秒

将启动的线程数增加到2000,结果为:

公平ReentrantLock:      1100 毫秒

非公平ReentrantLock:   125 毫秒

内部锁:                           130 毫秒

将启动的线程数增加到3000,结果为:

公平ReentrantLock:      2461 毫秒

非公平ReentrantLock:   254 毫秒

内部锁:                           307 毫秒

启动5000个线程,结果如下:

公平ReentrantLock:      6154  毫秒

非公平ReentrantLock:   623   毫秒

内部锁:                           720 毫秒

非公平ReentrantLock和内部锁的差距,在jdk6上应该缩小了,据说jdk6的内部锁机制进行了调整。

ReentrantLock和synchronized的性能对比的更多相关文章

  1. LongAdder和AtomicLong性能对比

    jdk1.8中新原子操作封装类LongAdder和jdk1.5的AtomicLong和synchronized的性能对比,直接上代码: package com.itbac.cas; import ja ...

  2. Java中的ReentrantLock和synchronized两种锁定机制的对比

    问题:多个访问线程将需要写入到文件中的数据先保存到一个队列里面,然后由专门的 写出线程负责从队列中取出数据并写入到文件中. http://blog.csdn.net/top_code/article/ ...

  3. java多线程之:Java中的ReentrantLock和synchronized两种锁定机制的对比 (转载)

    原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之 ...

  4. ReetrantLock Synchronized Atomic的性能对比

    之前看到了一篇帖子关于Lock和Synchronized的性能,写的是Lock比Synchronized的性能要好,可是,我试了下,结果却不是这样的,我所使用的JDK的版本是1.7,可能跟原帖作者用的 ...

  5. Java中的ReentrantLock和synchronized两种锁机制的对比

    原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之 ...

  6. Java ReentrantLock和synchronized两种锁定机制的对比

    多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之一就是,它是第一个直接把跨平台线程模型和正规的内存模型集成到语言中的主流语言.核心类库包含一个 Thread 类,可以用它来构建.启动 ...

  7. ReentrantLock和synchronized两种锁定机制

    ReentrantLock和synchronized两种锁定机制 >>应用synchronized同步锁 把代码块声明为 synchronized,使得该代码具有 原子性(atomicit ...

  8. 死磕 java同步系列之ReentrantLock VS synchronized——结果可能跟你想的不一样

    问题 (1)ReentrantLock有哪些优点? (2)ReentrantLock有哪些缺点? (3)ReentrantLock是否可以完全替代synchronized? 简介 synchroniz ...

  9. Collections.synchronizedList 、CopyOnWriteArrayList、Vector介绍、源码浅析与性能对比

    ## ArrayList线程安全问题 众所周知,`ArrayList`不是线程安全的,在并发场景使用`ArrayList`可能会导致add内容为null,迭代时并发修改list内容抛`Concurre ...

随机推荐

  1. Ubuntu超好用软件:剪贴板

    这个软件的作用就是保存你复制或者剪贴的内容 对于经常复制文字的Ubuntu使用者作用还是比较大的 下面附上安装代码 安装: sudo add-apt-repository ppa:shantzu/cl ...

  2. poj 3253 Fence Repair 优先队列

    poj 3253 Fence Repair 优先队列 Description Farmer John wants to repair a small length of the fence aroun ...

  3. 使用纯css3写出来的表情包 (^v^)

    效果如图所示: 不多说,我们直接一个一个来写出,主要列出每个表情的结构,样式我们统一写出,基本全部会用到,颜色以及结构可以根据自己的需求来调整.(里面可是没有一张图片的哦) 页面预览:http://2 ...

  4. 日常API之C#百度人脸识别

    最近看到一只我家徒儿发来的链接,原来是一堆百度AI的SDK,于是一时兴起就做了一只人脸识别,喵喵喵(●'◡'●) 一.准备工作 首先,当然是下载SDK啦:http://ai.baidu.com/sdk ...

  5. 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)

    01-复杂度2 Maximum Subsequence Sum   (25分) Given a sequence of K integers { N​1​​,N​2​​, ..., N​K​​ }. ...

  6. MapReduce编程之Reduce Join多种应用场景与使用

    在关系型数据库中 Join 是非常常见的操作,各种优化手段已经到了极致.在海量数据的环境下,不可避免的也会碰到这种类型的需求, 例如在数据分析时需要连接从不同的数据源中获取到数据.不同于传统的单机模式 ...

  7. 王佩丰第一讲 认识excel笔记

    改变工作表表浅颜色 批量插入工作表 选择多张工作表然后插入 找到表格边界区域快捷键(找到表格的最后一行):快速到达最上下左右端 点击边框上下左右双击 从指定的位置开始冻结窗格 输入今天的日期 快捷键c ...

  8. Python 接口:从协议到抽象基类

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px Helvetica } 抽象基类的常见用途:实现接口时作为超类使用.然后,说明抽象基类如何检查 ...

  9. 【转载】由浅入深分析mybatis通过动态代理实现拦截器(插件)的原理

    转自:http://zhangbo-peipei-163-com.iteye.com/blog/2033832?utm_source=tuicool&utm_medium=referral 我 ...

  10. VRTK实现瞬移需要添加的脚本

    进入一个新的公司,boss让实现漫游,但是新公司的Unity版本是5.6,我之前的瞬移插件不好用了,无奈之下找到一个我不熟悉的插件VRTK,但是查了很多资料也没有实现瞬移.经过自己查脚本与实验终于得到 ...