计数 luogu 4223 期望逆序对
https://www.luogu.org/problemnew/show/P4223
期望乘以\(\binom {n}{2}^k\)变成了计数问题
我们考虑每一组数\((A, B)\)产生的贡献CCCCCACCCCBCCCC
分7组考虑\((A, B)\)在\(k\)次操作之后去哪里了
\((A, B)\; (A, C)\;(B,A)\;(B,C)\;(C,A)\;(C,B)\;(C,C)\)
可以列出一个\(7 \times 7\)的矩阵表
矩阵快速幂后表示转移\(k\)次之后的系数(有点恶心
有一个结论就是CCCACCCBCCC
对于比如\((A, C)\)这个状态
\(B\)到达\(A\)左边和到达\(B\)右边的方案数是和\(C\)的个数成正比的
数学归纳法可证
因此推出式子可以发现\(i\)对\(j>i\)的贡献是一样的
树状数组维护即可
复杂度\(\mathcal O(n\log n)\)
#include <bits/stdc++.h>
#define int long long
#define fo(i, n) for(int i = 1; i <= (n); i ++)
#define out(x) cerr << #x << " = " << x << "\n"
#define type(x) __typeof((x).begin())
#define foreach(it, x) for(type(x) it = (x).begin(); it != (x).end(); ++ it)
using namespace std;
// by piano
template<typename tp> inline void read(tp &x) {
x = 0;char c = getchar(); bool f = 0;
for(; c < '0' || c > '9'; f |= (c == '-'), c = getchar());
for(; c >= '0' && c <= '9'; x = (x << 3) + (x << 1) + c - '0', c = getchar());
if(f) x = -x;
}
const int N = 5e5 + 233;
namespace {
const int mo = 1e9 + 7;
inline int add(int u, int v) {
if((u += v) >= mo) u -= mo;
return u;
}
inline int sub(int u, int v) {
if((u -= v) < 0) u += mo;
return u;
}
inline int mul(int u, int v) {
return u * v % mo;
}
inline int pw(int a, int k, int mo) {
int ans = 1;
for(; k; k >>= 1, a = mul(a, a))
if(k & 1) ans = mul(ans, a);
return ans;
}
}
struct Mar {
int m[7][7];
Mar() {
memset(m, 0, sizeof m);
}
inline void E(void) {
for(int i = 0; i < 7; i ++)
m[i][i] = 1;
}
}f, ans;
int a[N];
int cnt = 0, n, K;
Mar operator * (Mar a, Mar b) {
Mar c;
for(int i = 0; i < 7; i ++)
for(int j = 0; j < 7; j ++) {
int t = 0;
for(int k = 0; k < 7; k ++)
t = add(t, mul(a.m[i][k], b.m[k][j]));
c.m[i][j] = t;
}
return c;
}
inline void I(int a, int b, int c, int d, int e, int g, int h) {
f.m[cnt][0] = a; f.m[cnt][1] = b; f.m[cnt][2] = c;
f.m[cnt][3] = d; f.m[cnt][4] = e; f.m[cnt][5] = g;
f.m[cnt][6] = h;
cnt ++;
}
inline void Matrix_Init(void) {
int t = (n - 2) * (n - 3) / 2 % mo;
I(t, n - 2, 1, 0, 0, n - 2, 0);
I(1, t + n - 3, 0, 1, 1, 0, n - 3);
I(1, 0, t, n - 2, n - 2, 0, 0);
I(0, 1, 1, t + n - 3, 0, 1, n - 3);
I(0, 1, 1, 0, t + n - 3, 1, n - 3);
I(1, 0, 0, 1, 1, t + n - 3, n - 3);
I(0, 1, 0, 1, 1, 1, t + 2 * (n - 4) + 1);
}
inline Mar mf(Mar a, int k) {
Mar ans; ans.E();
for(; k; k >>= 1, a = a * a)
if(k & 1) ans = ans * a;
return ans;
}
struct Bit {
int tr[N], n;
inline void init(void) {
memset(tr, 0, sizeof tr);
n = ::n;
}
inline void A(int u, int val) {
for(; u <= n; u += u & -u)
tr[u] = add(tr[u], val);
}
inline int Q(int u) {
int ans = 0;
for(; u >= 1; u -= u & -u)
ans = add(ans, tr[u]);
return ans;
}
}x, y, z;
inline void doit(void) {
x.init(); y.init(); z.init();
int p = pw(n - 2, mo - 2, mo);
int inv2 = pw(2, mo - 2, mo);
int res = mul(n * (n - 1) / 2 % mo, ans.m[0][6]);
res = mul(res, inv2);
for(int j = 1; j <= n; j ++) {
int t;
int sm = x.Q(a[j] - 1);
int la = j - 1 - sm;
int p1 = add(mul(ans.m[0][3], mul(n - j, p)), mul(ans.m[0][5], mul(j - 2, p)));
int p2 = add(mul(ans.m[0][3], mul(j - 2, p)), mul(ans.m[0][5], mul(n - j, p)));
res = add(res, add(mul(la, p1), mul(sm, p2)));
res = add(res, add(mul(la, ans.m[0][0]),
mul(sm, ans.m[0][2])));
res = add(res, add(sub(y.Q(n), y.Q(a[j])), z.Q(a[j] - 1)));
x.A(a[j], 1);
t = add(mul(ans.m[0][1], mul(n - j - 1, p)),
mul(ans.m[0][4], mul(j - 1, p)));
y.A(a[j], t);
t = add(mul(ans.m[0][1], mul(j - 1, p)),
mul(ans.m[0][4], mul(n - j - 1, p)));
z.A(a[j], t);
}
cout << res << "\n";
}
main(void) {
read(n); read(K);
fo(i, n) read(a[i]);
Matrix_Init();
ans = mf(f, K);
doit();
}
计数 luogu 4223 期望逆序对的更多相关文章
- Luogu P4280 [AHOI2008]逆序对
题目描述 甩个链接就走 题解 先预处理出每个位置上分别填上 1~k 的数的逆序对的数量的前缀和与后缀和 (不用管原来有值的,统计时不计入答案就行了) (有点绕,看代码应该能懂) 然后枚举每个 -1 的 ...
- BZOJ5058 期望逆序对 【矩乘 + 组合数学 + 树状数组】
题目链接 BZOJ5058 题解 可以发现任意两个位置\(A,B\)最终位置关系的概率是相等的 如果数列是这样: CCCCACCCCBCCCC 那么最终有\(7\)种位置关系 \((A,B)\) \( ...
- Wannafly Camp 2020 Day 1A 期望逆序对 - 概率期望
分类讨论即可 #include <bits/stdc++.h> using namespace std; #define int long long const int N = 5005; ...
- luogu P1966 火柴排队 (逆序对)
luogu P1966 火柴排队 题目链接:https://www.luogu.org/problemnew/show/P1966 显然贪心的想,排名一样的数相减是最优的. 证明也很简单. 此处就不证 ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
- luogu 1521-求逆序对
题意: 逆序对指在一个序列中ai>aj && i < j,也就是一前一后两个数,当大的在前面的时候即算一对. 题目求在一个由1-n组成的序列中逆序对为k的序列的个数. 出题 ...
- luogu 1966 火柴排队 离散化+逆序对
题意:找到最小改变对数使a数组的第i大和b数组的第i大相等 则先将a,b,数组编号再排序,则数组显示的就是排名第i的数的编号 再关键一步:c[a[i].id]=b[i].id 实质上就是新建一个数组, ...
- 【Luogu】P3157动态逆序对(树状数组套主席树)
题目链接 md第一道在NOILinux 下用vim做的紫题.由于我对这个操作系统不是很熟悉,似乎有什么地方搞错了,md调死.(我还打了两遍代码,调了两个小时) 但是这道题并不难,就是树状数组套上主席树 ...
- [LUOGU] P1908 逆序对
题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为"逆序对"的 ...
随机推荐
- kafka服务端实验记录
kafka单机实验: 环境准备: 1.下载kafka,zookeeper,并解压 wget http://mirror.bit.edu.cn/apache/kafka/2.3.0/kafka_2.11 ...
- Windows MySql增量备份、完整备份采坑之路
1.前言 这周公司交给我一个任务,负责项目Mysql数据库的备份,因为项目上线后数据是一个大问题,出了什么问题数据才是最大的问题,备份这时候就显得尤为重要, 公司项目的思路是:在项目系统设置内可以勾选 ...
- 测试不得不知的python编程小技能-----升级版基础语法和优秀的编码习惯
编程和学习python,最后快速上手.能写小工具,写自动化用例这类要求对鹅厂的测试人员来说都是一些基础的必备素质,但是一个优秀的测试,也是有着一颗开发完美测试工具的心的.但是罗马不是一天构建成,特别是 ...
- Linux环境Ubuntu上安装GitLab
本文主要介绍在Ubuntu[Ubuntu 18.04.3]上安装最新的GitLab版本控制工具. 一.安装更新GitLab所需要的依赖项 sudo apt-get update 下载过程中,网络要有所 ...
- FireWolf OS X PE
FireWolf OS X PE FireWolf OS X PE 9 使用手册 https://pe.firewolf.app/manual/ https://pe.firewolf.app/m ...
- tp5模板中js方法中url函数传参的解决办法
代码如下: layer.msg(data.msg, {icon: 1,time:1500,shade: 0.1}, function(index){ layer.close(index); var s ...
- React 中的 定义组件的 两种方式
React 中创建 Components 的方式有两种:Function and Class 定义一个组件最简单的方法就是写一个 JavaScript 函数 function Welcome(prop ...
- Java网上学习资料
1.今天查找关于代理模式时找到的两个网站:take control with proxy design pattern
- fetch() without execute() [for Statement "SHOW VARIABLES LIKE 'wsrep_on'
增加栏位: pt-online-schema-change --user=root --password=a099e0 --alter "ADD COLUMN IS_MOBILE INT ...
- Android笔记(五十二) 侧滑菜单SlidingMenu
SlidingMenu是一个优秀的开源项目,可以实现侧滑菜单,简单介绍一下这SlidingMenu的使用: 常用属性和方法: setTouchModeAbove(int i )是否可以通过滑动手势打开 ...