BNUOJ 2528 Mayor's posters
Mayor's posters
This problem will be judged on UVA. Original ID: 10587
64-bit integer IO format: %lld Java class name: Main
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 ≤ n ≤ 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 ≤ i ≤ n, 1 ≤ li ≤ ri ≤ 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
Sample input
1
5
1 4
2 6
8 10
3 4
7 10
Output for sample input
4 解题:线段树+离散化。挂了几次,居然还有贴在10-10这样位置的数据,简直太疯狂了。。这能贴么,一个点啊!好吧,改正后,终于Ac 了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#include <map>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
set<int>st;
int a[maxn],b[maxn];
struct node{
int lt,rt,flag;
};
node tree[maxn<<];
int lisan[maxn<<];
void build(int lt,int rt,int v){
tree[v].lt = lt;
tree[v].rt = rt;
tree[v].flag = ;
if(lt + == rt) return;
int mid = (lt+rt)>>;
build(lt,mid,v<<);
build(mid,rt,v<<|);
}
void update(int lt,int rt,int v,int val){
if(lisan[tree[v].lt] == lt && lisan[tree[v].rt] == rt){
tree[v].flag = val;
return;
}
if(tree[v].flag){
tree[v<<].flag = tree[v<<|].flag = tree[v].flag;
tree[v].flag = ;
}
int mid = (tree[v].lt+tree[v].rt)>>;
if(rt <= lisan[mid]){
update(lt,rt,v<<,val);
}else if(lt >= lisan[mid]){
update(lt,rt,v<<|,val);
}else{
update(lt,lisan[mid],v<<,val);
update(lisan[mid],rt,v<<|,val);
}
}
void query(int v){
if(tree[v].flag){
if(!st.count(tree[v].flag)) st.insert(tree[v].flag);
return;
}
if(tree[v].lt+ == tree[v].rt) return;
query(v<<);
query(v<<|);
}
int main() {
int t,i,j,n,cnt,tot;
scanf("%d",&t);
while(t--){
tot = ;
scanf("%d",&n);
for(i = ; i <= n; i++){
scanf("%d %d",a+i,b+i);
if(a[i] > b[i]) swap(a[i],b[i]);
lisan[tot++] = a[i];
lisan[tot++] = ++b[i];
}
sort(lisan+,lisan+tot);
cnt = ;
for(i = ; i < tot; i++){
if(lisan[i] == lisan[cnt]) continue;
lisan[++cnt] = lisan[i];
}
build(,cnt,);
for(i = ; i <= n; i++) update(a[i],b[i],,i);
st.clear();
query();
printf("%d\n",st.size());
}
return ;
}
BNUOJ 2528 Mayor's posters的更多相关文章
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- POJ - 2528 Mayor's posters(dfs+分治)
POJ - 2528 Mayor's posters 思路:分治思想. 代码: #include<iostream> #include<cstdio> #include< ...
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】
任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 59239 Accepted: 17157 ...
- POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2528 Mayor's posters
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2528 Mayor's posters (线段树+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions:75394 Accepted: 21747 ...
随机推荐
- Linux的文件搜索命令(locate ,find,grep,find命令和)
刚开始学Linux,这是关于Linux文件搜索命令,就目前,尽我所能把他写全一点,后期随时补充 文件搜索命令 一.locate命令 二.find命令 三.grep命令 四.find命令和grep命令的 ...
- 【BZOJ2525】[Poi2011]Dynamite(二分,树形dp)
[BZOJ2525][Poi2011]Dynamite Description Byteotian Cave的结构是一棵N个节点的树,其中某些点上面已经安置了炸.药,现在需要点燃M个点上的引线引爆所有 ...
- P4128 [SHOI2006]有色图
传送门 数学渣渣看题解看得想死Ծ‸Ծ 首先发现这玩意儿看着很像polya定理 \[L=\frac{1}{|G|}\sum_{i\in G}m^{w(i)}\] 然而polya定理只能用来求点的置换,边 ...
- php可以定义数组的常量吗
是这样吗?<?php define('BEST_PHPER',array('name'=>'巩文','address'=>'china')); My God,明确告诉你不可以:原因是 ...
- Tomcat6和7版本对web.xml中taglib标签的配置差异
原来部署在Tomcat6中的应用在Tomcat7中运行时报错如下错误: java.lang.IllegalArgumentException: taglib definition not consis ...
- 使用Oracle SQL Developer迁移MySQL至Oracle数据库
Oracle SQL Developer是Oracle官方出品的数据库管理工具.本文使用Oracle SQL Developer执行从MySQL迁移至Oracle数据库的操作. 2017年3月6日 操 ...
- 全面学习ORACLE Scheduler特性(6)设置Repeat Interval参数
3.3 设置Repeat Interval Job 和Schedule中REPEAT_INTERVAL参数都是用来控制执行的频率或周期,虽然说周期是一个时间性概念,不过REPEAT_INTERVAL指 ...
- 6.12---前提两个对象的成员必须一致,才能将有数据的对象将数据传给反射获取的对象conver(有数据对象,目标对象)
//// Source code recreated from a .class file by IntelliJ IDEA// (powered by Fernflower decompiler)/ ...
- mac当你有多个版本的命令存在是怎么使用最新版本
例如你安装了一个最新的git.然而系统中由于xcode等自带的git的存在.使得/usr/bin/git 是xcode的版本. 只需要再 ~/.bash_profile 中添加一行优先path即可 e ...
- firefox浏览器中 bootstrap 静态弹出框中select下拉框不能弹出(解决方案)
问题出现场景1: 在firefox浏览器中在bootstrap弹出的modal静态框中再次弹出一个静态框时 select下拉框不能弹出选项 解决方案:去掉最外层静态框的 tabindex=" ...