Spark RDD/Core 编程 API入门系列之简单移动互联网数据(五)
通过对移动互联网数据的分析,了解移动终端在互联网上的行为以及各个应用在互联网上的发展情况等信息。
具体包括对不同的应用使用情况的统计、移动互联网上的日常活跃用户(DAU)和月活跃用户(MAU)的统计,以及不同应用中的上行下行流量统计等分析。
为了简化移动互联网数据的分析,我这里是当个入门。
假设,移动互联网数据如下
NodeID即基站ID信息 CI即小区标识信息 IMEI即国际移动电话设备识别码 APP即应用名称 Time即访问时间 UplinkBytes即上行的字节数 DownlinkBytes即下行的字节数

1,1,460028714280218,360,2015-05-01,7,1116
1,2,460028714280219,qq,2015-05-02,8,121
1,3,460028714280220,yy,2015-05-03,9,122
1,4,460028714280221,360,2015-05-04,10,119
2,1,460028714280222,yy,2015-05-05,5,1119
2,2,460028714280223,360,2015-05-01,12,121
2,3,460028714280224,qq,2015-05-02,13,122
3,1,460028714280225,qq,2015-05-03,1,1117
3,2,460028714280226,qq,2015-05-04,9,1118
3,3,460028714280227,qq,2015-05-05,10,120
1,1,460028714280218,360,2015-06-01,11,1118
1,2,460028714280219,qq,2015-06-02,2,1119
1,3,460028714280220,yy,2015-06-03,9,1120
1,4,460028714280221,360,2015-06-04,10,119
2,1,460028714280222,yy,2015-06-05,11,1118
2,2,460028714280223,360,2015-06-01,11,121
2,3,460028714280224,qq,2015-06-02,4,1119
3,1,460028714280225,qq,2015-06-03,17,119
3,2,460028714280226,qq,2015-06-04,19,1119
3,3,460028714280227,qq,2015-06-05,20,121
新建mobileInternet


数据源,放在本项目根目录下的data目录下








代码:
package cn.spark.study.core
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.{Level,Logger}
object mobileInternet {
def main(args: Array[String]) {
val conf = new SparkConf()
.setAppName("WordCount")
.setMaster("local");
val sc = new SparkContext(conf)
//去除过多的日志信息
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.spark,sql").setLevel(Level.WARN)
Logger.getLogger("org.apache.hadoop.hive.ql").setLevel(Level.WARN)
/*
*、一、移动互联网数据字段模型等变量的定义
*/
//定义当前移动互联网数据的字段列表
val fields = List("NodeID","CI","IMEI","APP","Time","UplinkBytes","DownlinkBytes")
//为了避免在每个task任务中传输fields信息,可以对其进行广播
val bcfields = sc.broadcast(fields)
/*NodeID即基站ID信息 CI即小区标识信息 IMEI即国际移动电话设备识别码 APP即应用名称 Time即访问时间 UplinkBytes即上行的字节数 DownlinkBytes即下行的字节数
1,1,460028714280218,360,2015-05-01,7,1116
1,2,460028714280219,qq,2015-05-02,8,121
1,3,460028714280220,yy,2015-05-03,9,122
1,4,460028714280221,360,2015-05-04,10,119
2,1,460028714280222,yy,2015-05-05,5,1119
2,2,460028714280223,360,2015-05-01,12,121
2,3,460028714280224,qq,2015-05-02,13,122
3,1,460028714280225,qq,2015-05-03,1,1117
3,2,460028714280226,qq,2015-05-04,9,1118
3,3,460028714280227,qq,2015-05-05,10,120
1,1,460028714280218,360,2015-06-01,11,1118
1,2,460028714280219,qq,2015-06-02,2,1119
1,3,460028714280220,yy,2015-06-03,9,1120
1,4,460028714280221,360,2015-06-04,10,119
2,1,460028714280222,yy,2015-06-05,11,1118
2,2,460028714280223,360,2015-06-01,11,121
2,3,460028714280224,qq,2015-06-02,4,1119
3,1,460028714280225,qq,2015-06-03,17,119
3,2,460028714280226,qq,2015-06-04,19,1119
3,3,460028714280227,qq,2015-06-05,20,121*/
/*
*、二、移动互联网数据的加载及预处理
*/
//首先加载文件,然后通过判断每行数据的字段个数,对访问记录的有效性进行判断
//加载文件,并将每行记录以逗号分隔,最后根据字段个数进行过滤
val mobile = sc.textFile("./data/mobileInternet.txt").map(_.split(",")).filter{
case line if(line.length != bcfields.value.length) => false
case _ => true
}
/*
* 三、不同的应用使用情况的统计
*/
//对APP字段访问次数的简单统计
// mobile.map( x => (x(bcfields.value.indexOf("APP")),1)).reduceByKey(_+_)
// .map( x => (x._2,x._1)).sortByKey(false).map( x => (x._2,x._1)).collect().foreach(println)
// mobile.map( x => (x(bcfields.value.indexOf("APP")),1)).reduceByKey(_+_)
// .map( x => (x._2,x._1)).sortByKey(false).map( x => (x._2,x._1)).repartition(1).saveAsTextFile("/result/appstat1")
/*
* 四、移动互联网数据上的DAU及MAU的统计
*/
//对 移动互联网数据上的DAU及MAU的统计,需要注意对用户的去重处理:每个用户由字段IMEI唯一标识。统计时需要去除重复用户。
//对DAU字段访问的简单统计
//首先,将IMEI字段和Time字段进行合并,再去重,最后从合并数据中提取出Time字段
// mobile.map( x => (x(bcfields.value.indexOf("IMEI")) + ":" + x(bcfields.value.indexOf("Time"))))
// .distinct().map( x => (x.split(":")(1),1))
// .reduceByKey(_+_).sortByKey().collect().foreach(println)
//对MAU字段访问的简单统计
// mobile.map { x =>
// val t = x(bcfields.value.indexOf("Time"))
// val m = t.substring(0,t.lastIndexOf("-"))
// x(bcfields.value.indexOf("IMEI")) + ":" + m
// }.distinct().map( x => ( x .split(":")(1),1)).reduceByKey(_+_).sortByKey().collect().foreach(println)
/*
* 五、移动互联网数据上的上下行流量的统计
*/
mobile.map { x =>
val ub = x(bcfields.value.indexOf("UplinkBytes")).toDouble
val db = x(bcfields.value.indexOf("DownlinkBytes")).toDouble
(x(bcfields.value.indexOf("APP")),List[Double](ub,db))
}.reduceByKey((x,y) => List(x(0) + y(0) , x(1) + y(1))).collect().foreach(println)
}
}
Spark RDD/Core 编程 API入门系列之简单移动互联网数据(五)的更多相关文章
- Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)
本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1. Trandform ...
- Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...
- Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)
1.以本地模式实战map和filter 2.以集群模式实战textFile和cache 3.对Job输出结果进行升和降序 4.union 5.groupByKey 6.join 7.reduce 8. ...
- Spark RDD/Core 编程 API入门系列 之rdd案例(map、filter、flatMap、groupByKey、reduceByKey、join、cogroupy等)(四)
声明: 大数据中,最重要的算子操作是:join !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD ...
- Hadoop MapReduce编程 API入门系列之wordcount版本1(五)
这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...
- Hadoop HDFS编程 API入门系列之简单综合版本1(四)
不多说,直接上代码. 代码 package zhouls.bigdata.myWholeHadoop.HDFS.hdfs4; import java.io.IOException; import ja ...
- Spark SQL 编程API入门系列之SparkSQL的依赖
不多说,直接上干货! 不带Hive支持 <dependency> <groupId>org.apache.spark</groupId> <artifactI ...
- Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)
不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...
- HBase编程 API入门系列之create(管理端而言)(8)
大家,若是看过我前期的这篇博客的话,则 HBase编程 API入门系列之put(客户端而言)(1) 就知道,在这篇博文里,我是在HBase Shell里创建HBase表的. 这里,我带领大家,学习更高 ...
随机推荐
- 《hello-world》第八次团队作业:Alpha冲刺
项目 内容 这个作业属于哪个课程 2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十二 团队作业8:软件测试与Alpha冲刺 团队名称 <hello--worl ...
- vue 安装+下载
1. npm init -y [生成package.json文件] 2. 增加 "private": true, 3.npm install 4. npm install vue ...
- 【Codeforces 1030D】Vasya and Triangle
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 参考这篇题解:https://blog.csdn.net/mitsuha_/article/details/82825862 为什么可以保证m ...
- Python学习笔记 (2.1)标准数据类型之Number(数字)
Python3中,数字分为四种——int,float,bool,complex int(整型) 和数学上的整数表示没啥区别,没有大小限制(多棒啊,不用写整数高精了),可正可负.还可表示16进制,以 0 ...
- hdu 1269 求连通图的模板题
#include<stdio.h> #include<string.h> #include<iostream>//只存在一个连通分量 #include<str ...
- 【BZOJ2342】双倍回文(manacher,并查集)
题意: 思路:From http://blog.sina.com.cn/s/blog_8d5d2f04010196bh.html 首先我可以看出: (1)我们找到的串的本身也是一个回文串(显然) (2 ...
- 【CV论文阅读】Two stream convolutional Networks for action recognition in Vedios
论文的三个贡献 (1)提出了two-stream结构的CNN,由空间和时间两个维度的网络组成. (2)使用多帧的密集光流场作为训练输入,可以提取动作的信息. (3)利用了多任务训练的方法把两个数据集联 ...
- golang中select case 的用途到底是啥
https://nanxiao.gitbooks.io/golang-101-hacks/content/posts/select-operation.html ------------------- ...
- [Vue @Component] Place Content in Components with Vue Slots
Vue's slots enable you to define where content of a component should land when you define the conten ...
- Android Path路径设置,针对error opening trace file:No such file or directory
对于android的开发者来说,首先要做的就是环境变量的配置.学习过java的人都知道,java是须要配置环境变量的,那么android开发是否也须要我们配置环境变量呢?当然,安卓的环境变量须要我们配 ...