吴裕雄 python 机器学习——局部线性嵌入LLE降维模型
# -*- coding: utf-8 -*- import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #局部线性嵌入LLE降维模型
def test_LocallyLinearEmbedding(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
lle=manifold.LocallyLinearEmbedding(n_components=n)
lle.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, lle.reconstruction_error_)) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_LocallyLinearEmbedding
test_LocallyLinearEmbedding(X,y)

def plot_LocallyLinearEmbedding_k(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=lle.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k
plot_LocallyLinearEmbedding_k(X,y)

def plot_LocallyLinearEmbedding_k_d1(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
Ks=[1,5,25,y.size-1]# n_neighbors参数的候选值的集合 fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=1,n_neighbors=k)
X_r=lle.fit_transform(X)#原始数据集转换到 1 维 ax=fig.add_subplot(2,2,i+1)## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),
(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2),)# 颜色集合,不同标记的样本染不同的颜色
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),
label="target= %d"%label,color=color) ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k_d1
plot_LocallyLinearEmbedding_k_d1(X,y)

吴裕雄 python 机器学习——局部线性嵌入LLE降维模型的更多相关文章
- 吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- 吴裕雄 python 机器学习——主成份分析PCA降维
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型
from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...
- 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型
from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
随机推荐
- AcWing 1058. 股票买卖 V
//初始状态(入口)转移到手中无货的第>=2天 //最终状态(出口)可能从手中无货的第一天转移过来,或者从手中无货的第>=2天 //f[i,0]表示走到第i天,且位于手中有货的状态 //f ...
- 论如何用python发qq消息轰炸虐狗好友
因为我的某个好友在情人节的时候秀恩爱,所以我灵光一闪制作了qq消息轰炸并记录了下来. PS:另外很多人在学习Python的过程中,往往因为遇问题解决不了或者没好的教程从而导致自己放弃,为此我整理啦从基 ...
- Java修饰符类型
转自原文:http://www.yiibai.com/java/java_modifier_types.html 修饰符是添加到这些定义来改变它们的含义的关键词. Java语言有各种各样修饰词,其中包 ...
- Docker(二)Image 与网络
Docker Image 我们介绍一下如何构造一个自定义的 Docker Image.在Docker 中,我们使用Dokcerfile 构建一个docker的描述. 首先我们定义一下需要启动一个什么 ...
- 剑指offer系列——59/60.按之字形顺序打印二叉树/把二叉树打印成多行
Q:请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. A:BFS,偶数层reverse vector&l ...
- New Skateboard
Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new ...
- linux下部署Mono oracle配置,oracle客户端安装
一.Mono,apache安装,配置网站(以 centos 7 +apache 2为例): 安装教程以官网的教程为追,百度来的多少有版本问题. mono官网连接: 1. Mono的安装:https:/ ...
- python3练习100题——016
今天的题目比较容易了,旨在让人掌握datetime模块下的一些用法. 链接:http://www.runoob.com/python/python-exercise-example16.html 题目 ...
- 220. 存在重复元素 III
题目: 给定一个整数数组,判断数组中是否有两个不同的索引 i 和 j,使得 nums [i] 和 nums [j] 的差的绝对值最大为 t,并且 i 和 j 之间的差的绝对值最大为 ķ. 示例 1: ...
- css 动画开关按钮
<style> input[type="checkbox"] { display: none; } input[type="checkbox"] + ...