# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #局部线性嵌入LLE降维模型
def test_LocallyLinearEmbedding(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
lle=manifold.LocallyLinearEmbedding(n_components=n)
lle.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, lle.reconstruction_error_)) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_LocallyLinearEmbedding
test_LocallyLinearEmbedding(X,y)

def plot_LocallyLinearEmbedding_k(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=lle.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k
plot_LocallyLinearEmbedding_k(X,y)

def plot_LocallyLinearEmbedding_k_d1(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
Ks=[1,5,25,y.size-1]# n_neighbors参数的候选值的集合 fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=1,n_neighbors=k)
X_r=lle.fit_transform(X)#原始数据集转换到 1 维 ax=fig.add_subplot(2,2,i+1)## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),
(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2),)# 颜色集合,不同标记的样本染不同的颜色
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),
label="target= %d"%label,color=color) ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k_d1
plot_LocallyLinearEmbedding_k_d1(X,y)

吴裕雄 python 机器学习——局部线性嵌入LLE降维模型的更多相关文章

  1. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  2. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  3. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  4. 吴裕雄 python 机器学习——主成份分析PCA降维

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  5. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  6. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

  7. 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型

    from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

随机推荐

  1. C# Enumerable

    使用Enumerable.Range 打印数字0到9 static void Main(string[] args) { , ); //Range方法获取两个int参数:一个起始数,一个是要生成的结果 ...

  2. navicat 连接报2059错误

    原因 navicat不支持mysql新版本的加密规则,mysql8 之前的版本中加密规则是mysql_native_password, mysql8之后,加密规则是caching_sha2_passw ...

  3. Linux DataGuard --

      概述 Oracle Data Guard 是针对企业数据库的最有效和最全面的数据可用性.数据保护和灾难恢复解决方案.它提供管理.监视和自动化软件基础架构来创建和维护一个或多个同步备用数据库,从而保 ...

  4. a标签绑定事件

    <a href="javascript:void(0);" onclick="js_method()"></a> 这种方法是很多网站最常 ...

  5. Excel VBA 如何在工作表上使用Option Button按钮

    应用场景 在Excel的页面上放一个“确认”按钮,再放几个Option Button按钮,编写代码,点击“确认”按钮,判断出选择了哪个Option按钮, 然后根据选择不同的Option Button去 ...

  6. 126. 单词接龙 II

    题目: 链接:https://leetcode-cn.com/problems/word-ladder-ii/ 给定两个单词(beginWord 和 endWord)和一个字典 wordList,找出 ...

  7. 执行python程序的方式

    1.交互器 程序不能永久保存 主要用于简单的语法测试相关 2.文件执行

  8. ProgressTimer 控件

    let background = new cc.Sprite(fileName_background);this.addChild(background,999999);background.setP ...

  9. 《深入理解Java虚拟机》读书笔记五

    第六章 类文件结构 1.无关性的基石 各种不同平台的虚拟机与所有平台都统一使用程序存储格式——字节码是构成平台无关的基石. 实现语言无关性的基础仍然是虚拟机和字节码存储格式,Java虚拟机不和包括Ja ...

  10. vector,list不是模板

    vector和list在命名空间std里,还需要添加声明 using namespace std;   或者 std::list 也可以.