# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #局部线性嵌入LLE降维模型
def test_LocallyLinearEmbedding(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
lle=manifold.LocallyLinearEmbedding(n_components=n)
lle.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, lle.reconstruction_error_)) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_LocallyLinearEmbedding
test_LocallyLinearEmbedding(X,y)

def plot_LocallyLinearEmbedding_k(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=lle.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k
plot_LocallyLinearEmbedding_k(X,y)

def plot_LocallyLinearEmbedding_k_d1(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
Ks=[1,5,25,y.size-1]# n_neighbors参数的候选值的集合 fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=1,n_neighbors=k)
X_r=lle.fit_transform(X)#原始数据集转换到 1 维 ax=fig.add_subplot(2,2,i+1)## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),
(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2),)# 颜色集合,不同标记的样本染不同的颜色
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),
label="target= %d"%label,color=color) ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k_d1
plot_LocallyLinearEmbedding_k_d1(X,y)

吴裕雄 python 机器学习——局部线性嵌入LLE降维模型的更多相关文章

  1. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  2. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  3. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  4. 吴裕雄 python 机器学习——主成份分析PCA降维

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  5. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  6. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

  7. 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型

    from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

随机推荐

  1. Nginx proxy_set_header 配置注意事项

    转载自:https://www.jianshu.com/p/fd16b3d10752 如果没有特别注意 proxy_set_header 配置,使用 proxy_set_header 可能会引起以下问 ...

  2. 【C语言】两个乒乓球队进行比赛,各出三人。甲队为a,b,c三人,乙队为x,y,z三人。已抽签决定比赛名单。有人向队员打听比赛的名单,a说他不和x比,c说他不和x,z比,编写程序找出三对赛手名单。

    问题分析:假设a是A的对手,b是B的对手,c是C的对手,a,b,c分别是x,y,z之一,且a,b,c互不相等,同时还要满足条件a!= 'x'&&c != 'x'&&c ...

  3. Ora-00906:missing left parenthesis

    问题描述 Ora-00906:missing left parenthesis 问题原因 varchar和varchar2  必须指定长度,不然会报错

  4. Sublime Text(代码编辑软件)

    特点 Sublime Text 3是一个轻量.简洁.高效.跨平台的编辑器,方便的配色以及兼容vim快捷键等各种优点: 它体积小巧,无需安装,绿色便携:它可跨平台支持Windows/Mac/Linux: ...

  5. 2.2测试赛AC代码临时保存

    //A #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...

  6. python面试的100题(16)

    Python高级 元类 42.Python中类方法.类实例方法.静态方法有何区别? 类方法: 是类对象的方法,在定义时需要在上方使用 @classmethod 进行装饰,形参为cls,表示类对象,类对 ...

  7. rest_framework:响应器(渲染器)

    一.作用: 根据用户的请求url或者用户可接受的类型.筛选出合适的渲染组件 用户请求url: http://127.0.0.1:8000/test/?format=json http://127.0. ...

  8. phpstorm汉化包

    链接:https://pan.baidu.com/s/1dG7AWI87dOJJezra9veFrA 提取码:btmf 下载后放到lib目录中 即可

  9. JavaScript的BOM对象

    JavaScript的BOM对象 BOM:浏览器对象模型 JavaScript和浏览器的关系:JavaScript的诞生就是为了能够让它再浏览器中运行. 1. 操作BOM对象 1.1 window w ...

  10. 一个小时学会jQuery(转载)

    目录 一.jQuery简介与第一个jQuery程序 1.1.jQuery简介 1.2.jQuery特点 1.3.jQuery版本 1.4.获得jQuery库 1.5.第一个jQuery程序 二.jQu ...