Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。
Input

仅包含一行,为两个整数n和m。
Output

仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4

【样例输入2】
3 4

Sample Output
【样例输出1】
36

【样例输出2】
20

【数据规模和约定】
对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。

囧,最后还是翻了题解

其实暴力算是nlogn的,我们算gcd=d的个数时,初始为(n/d)*(m/d),然后减去2*d,3*d,4*d....的

然后复杂度就是O(n/1+n/2+n/3+n/4+...+n/n),大概比nlogn还小一些

 const
maxn=;
var
f:array[..maxn]of int64;
n,m:longint;
ans:int64; procedure main;
var
i,j,t:longint;
begin
read(n,m);
if n>m then t:=m
else t:=n;
for i:=t downto do
begin
f[i]:=trunc(n/i)*trunc(m/i);
j:=i*;
while j<=t do
begin
dec(f[i],f[j]);
inc(j,i);
end;
inc(ans,f[i]*i);
end;
ans:=ans*-int64(n)*m;
writeln(ans);
end; begin
main;
end.

2005: [Noi2010]能量采集 - BZOJ的更多相关文章

  1. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  2. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  3. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  4. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  5. 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Statu ...

  6. 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...

  7. 【刷题】BZOJ 2005 [Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  8. BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:   思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...

  9. BZOJ 2005 2005: [Noi2010]能量采集 | 容斥原理

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: http://blog.csdn.net/popoqqq/article/de ...

随机推荐

  1. SQLServer排序时与读取的记录会影响到结果?

    这是在做程序的时候发现的,我用到了一个分页存储过程,在翻看第二页的时候发现结果竟然与第一页有很多重复的内容, 下面开始测试一下吧: 创建表 create table abc ( id int prim ...

  2. 读书笔记-常用设计模式之MVC

    1.MVC(Model-View-Controller,模型-视图-控制器)模式是相当古老的设计模式之一,它最早出现在SmallTalk语言中.MVC模式是一种复合设计模式,由“观察者”(Observ ...

  3. eclipse maven spring +spring mvc mybatis

    http://yuanmomo.net/archives/449 http://www.tuicool.com/articles/feqUJz http://wenku.baidu.com/link? ...

  4. JS函数式编程【译】2.2 与函数共舞

  5. Code Review的一些典型内容

    如下是Code Review中一些典型的内容: 一.常规项: 1.代码能够工作么?它有没有实现预期的功能,逻辑是否正确等. 2.所有的代码是否简单易懂? 3.代码符合你所遵循的编程规范么?这通常包括大 ...

  6. PHP 如何判断当前用户已在别处登录

    出处:http://bbs.lampbrother.net/read-htm-tid-121909-ds-1.html#tpc 主要思路:1.登录时,将用户的SessionID记录下来2.验证登录时, ...

  7. 读取XML

    public sealed class ConfigManger { public XDocument XmlDocs { set; get; } string path = @"{0}\C ...

  8. c#键盘鼠标钩子

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  9. 【Qt】Qt之自定义界面(实现无边框、可移动)【转】

    简述 UI设计是指对软件的人机交互.操作逻辑.界面美观的整体设计.好的UI设计不仅是让软件变得有个性.有品位,还要让软件的操作变得舒适简单.自由,充分体现软件的定位和特点. 爱美之心人皆有之.其实软件 ...

  10. 浅析Mysql 数据回滚错误的解决方法

    介绍一下关于Mysql数据回滚错误的解决方法.需要的朋友可以过来参考下 MYSQL的事务处理主要有两种方法.1.用begin,rollback,commit来实现begin 开始一个事务rollbac ...