http://poj.org/problem?id=3522

Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5666   Accepted: 2965

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

 
【题解】:
 这道题简单的来说就是求一棵生成树使最大的边和最小的边差值最小。

  换个角度想就是用n-1条(n个点)数值相差不多的边,组成一棵生成树。 在生成树的prim和kruskal两个算法中很容易就会觉得kruskal的贪心思想会更加适合这道题。 kruskal算法一开始会对边进行排序,然后枚举最小的边。

【code】:
 /**
Judge Status:Accepted Memory:756K
Time:157MS Language:G++
Code Lenght:1613B Author:cj
*/ #include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm> #define N 110
#define M 6000
#define INF 1000000000 using namespace std; struct Nod
{
int a,b,c;
}node[M]; int n,m,parent[N]; bool cmp(Nod a,Nod b)
{
return a.c<b.c;
} int findp(int a)
{
while(a!=parent[a])
{
a=parent[a];
}
return a;
} int merge(Nod nd)
{
int x = findp(nd.a);
int y = findp(nd.b);
if(x!=y)
{
parent[x]=y;
return nd.c;
}
return -;
} int kruskal(int id)
{
int i,cnt = ;
if(m-id+<n-) return INF; //少于n-1边的话 注定够不成生成树
for(i=;i<=N;i++) parent[i]=i;
int flag = ,mins
for(i=id;i<m;i++)
{
int temp = merge(node[i]);
if(temp!=-)
{
if(!flag) mins = temp; //记录最小边
flag = ;
cnt++;
}
if(cnt>=n-) return temp-mins; //只要找到n-1条边即可,返回最大边与最小边的差
}
if(cnt<n-) return INF; //构不成生成树
} int main()
{ while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) break;
if(m==){puts("-1");continue;}
int i;
for(i=;i<m;i++)
{
scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
}
sort(node,node+m,cmp);
int ans = INF;
int temp = kruskal();
if(temp==INF)
{
puts("-1");
continue;
}
if(ans>temp) ans = temp;
for(i=;i<m;i++)
{
temp = kruskal(i); //枚举最小边
if(ans>temp) ans = temp;
}
printf("%d\n",ans);
}
return ;
}

poj 3522 Slim Span (最小生成树kruskal)的更多相关文章

  1. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  2. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  3. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  4. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  7. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  8. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  9. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. BZOJ 2962

    2962: 序列操作 Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 618  Solved: 225[Submit][Status][Discuss] ...

  2. T-SQL利用Row_Number函数实现分页

    SQL: CREATE PROCEDURE PagingViewTest ( @currentPageIndex INT, --页序号 @pageSize INT, --页大小 @pageCount ...

  3. CXF(2.7.10) - RESTful Services

    1. 定义 JavaBean.注意 @XmlRootElement 注解,作用是将 JavaBean 映射成 XML 元素. package com.huey.demo.bean; import ja ...

  4. 【Cocos2d入门教程六】Cocos2d-x事件篇之触摸

    Cocos游戏当中产生一个事件时,可以有多个对象在监听该事件,所以有优先级(Priority).优先级越高(Priority值越小),事件响应越靠前. 关系图: 新 事件分发机制:在2.x 版本事件处 ...

  5. vs2015启动iis express失败

    vs2015启动web项目失败,查看日志 IIS Express\aspnetcore.dll 未能加载 ,解决方法 下载 VSorVWDASPNETCore.exe (https://www.asp ...

  6. RDD机制实现模型Spark初识

    Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性.       在Spark中,通过RDD( ...

  7. asp.net 文件上传示例整理

    ASP.NET依托.net framework类库,封装了大量的功能,使得上传文件非常简单,主要有以下三种基本方法. 方法一:用Web控件FileUpload,上传到网站根目录.  代码如下 复制代码 ...

  8. 客户端javascript笔记

    html 中的 onclick访问的是全局作用域

  9. myeclipse与数据库进行连接(无需写代码进行验证)

    首先对SqlServer配置管理器进行设置. 1.打开SqlServer配置管理器 2.进入SQL配置管理器后,选中左侧“SQL Server网络配置”>>再选中“MSSQLSERVER的 ...

  10. Ueditor设置默认字体

    其实很简单,只需要将ueditor.all.js 以及 ueditor.all.min.js 两个文件中的字体改掉即可 修改方法: 在ueditor.all.js中搜索:设置默认字体和字号: 在ued ...