http://poj.org/problem?id=3522

Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5666   Accepted: 2965

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

 
【题解】:
 这道题简单的来说就是求一棵生成树使最大的边和最小的边差值最小。

  换个角度想就是用n-1条(n个点)数值相差不多的边,组成一棵生成树。 在生成树的prim和kruskal两个算法中很容易就会觉得kruskal的贪心思想会更加适合这道题。 kruskal算法一开始会对边进行排序,然后枚举最小的边。

【code】:
 /**
Judge Status:Accepted Memory:756K
Time:157MS Language:G++
Code Lenght:1613B Author:cj
*/ #include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm> #define N 110
#define M 6000
#define INF 1000000000 using namespace std; struct Nod
{
int a,b,c;
}node[M]; int n,m,parent[N]; bool cmp(Nod a,Nod b)
{
return a.c<b.c;
} int findp(int a)
{
while(a!=parent[a])
{
a=parent[a];
}
return a;
} int merge(Nod nd)
{
int x = findp(nd.a);
int y = findp(nd.b);
if(x!=y)
{
parent[x]=y;
return nd.c;
}
return -;
} int kruskal(int id)
{
int i,cnt = ;
if(m-id+<n-) return INF; //少于n-1边的话 注定够不成生成树
for(i=;i<=N;i++) parent[i]=i;
int flag = ,mins
for(i=id;i<m;i++)
{
int temp = merge(node[i]);
if(temp!=-)
{
if(!flag) mins = temp; //记录最小边
flag = ;
cnt++;
}
if(cnt>=n-) return temp-mins; //只要找到n-1条边即可,返回最大边与最小边的差
}
if(cnt<n-) return INF; //构不成生成树
} int main()
{ while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) break;
if(m==){puts("-1");continue;}
int i;
for(i=;i<m;i++)
{
scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
}
sort(node,node+m,cmp);
int ans = INF;
int temp = kruskal();
if(temp==INF)
{
puts("-1");
continue;
}
if(ans>temp) ans = temp;
for(i=;i<m;i++)
{
temp = kruskal(i); //枚举最小边
if(ans>temp) ans = temp;
}
printf("%d\n",ans);
}
return ;
}

poj 3522 Slim Span (最小生成树kruskal)的更多相关文章

  1. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  2. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  3. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  4. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  7. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  8. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  9. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. poj 3278 Catch That Cow 优化深搜

    这题的思想很简单,就是每次找出队列里面花费时间最少的来走下一步,这样当我们找到k点后,所花费的时间一定是最少的. 但要用一个标记数组vis[200010],用来标记是否走过.否则会内存溢出. #inc ...

  2. Java HashCode方法

    有许多人学了很长时间的Java,但一直不明白hashCode方法的作用,  我来解释一下吧.首先,想要明白hashCode的作用,你必须要先知道Java中的集合.   总的来说,Java中的集合(Co ...

  3. 引用web service时,出现无法识别的配置节点applicationSettings

    ApplicationSetting 节点的内容: <applicationSettings> <MyWeb.Properties.Settings> <setting ...

  4. Ehcache(2.9.x) - API Developer Guide, Using Explicit Locking

    About Explicit Locking Ehcache contains an implementation which provides for explicit locking, using ...

  5. 老男孩-金角大王-python学习博客地址

    http://www.cnblogs.com/alex3714/category/770733.html

  6. C# WCF学习笔记(二)终结点地址与WCF寻址(Endpoint Address and WCF Addressing) WCF中的传输协议

    URI的全称是 Uniform Rosource Identifire(统一资源标识),它唯一标识一个确定的网绐资源,同时也表示资源所处的位置及访问的方式(资源访问所用的网络协议). 对于Endpoi ...

  7. 理解CPU内存管理

    概述:从设计层面理解CPU的内存模式,包括段式内存管理.页式内存管理以及虚拟化扩展内存管理.实际上,硬件支持与软件实现从来就不是能分开讲的,比如,Intel CPU架构师在选择CPU的硬件特性时,必然 ...

  8. Cocos2d-x开发实例:单点触摸事件

    下面我们通过一个实例详细了解一下,层中单点触摸事件的实现过程.感受一下它的缺点和优点.该实例场景如下图所示,场景中有两个方块精灵,我们可以点击和移动它们.   下面我们看看HelloWorldScen ...

  9. (转)linux TOP命令各参数详解【转载】

    实时监控或查看系统资源使用情况的工具——TOP top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器. 下面详细介绍它的使用方法: ( ...

  10. spring定时器 @Scheduled

    需要注意的几点: 1.spring的@Scheduled注解  需要写在实现上. 2. 定时器的任务方法不能有返回值(如果有返回值,spring初始化的时候会告诉你有个错误.需要设定一个proxyta ...