题目描述:题目链接

同样对于这个问题,我们可以考虑用动态规划来解决。

解决动态规划常见的三个步骤:

1:问题的归纳。对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示。

2:归纳递推式:d[ i ][ j ] = Math.min( d [ i - 1 ] [ j ] ,  d [ i  ] [ j - 1 ] ) + grid[ i ][ j ];因为题目中规定,只能向下或者向右边移动。

3:初始化d.  对于首行和首列肯定可以用一个for循环来表示。

要点:我们可以借用原数组来表示d,而不需要重新再new一个数组。

下面给出代码的描述:

class Solution {
public int minPathSum(int[][] grid) {
//利用动态规划思路解决
//先初始化首列
for(int i = 1; i < grid.length;i++)
grid[i][0] += grid[i-1][0];
//初始化首行
for(int i = 1; i < grid[0].length; i++)
grid[0][i] += grid[0][i-1] ; for(int i = 1; i < grid.length; i++){
for(int j = 1; j < grid[0].length;j++){
grid[i][j] = Math.min(grid[i][j-1],grid[i-1][j])+grid[i][j];
}
}
return grid[grid.length-1][grid[0].length-1];
}
}

Leetcode——64. 最小路径和的更多相关文章

  1. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. Java实现 LeetCode 64 最小路径和

    64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...

  4. [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)

    描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[  [1,3,1], [1,5,1 ...

  5. LeetCode 64最小路径和

    题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5 ...

  6. [LeetCode]64. 最小路径和(DP)

    题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...

  7. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  8. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  9. Leetcode题目64.最小路径和(动态规划-中等)

    题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...

随机推荐

  1. HDU1024(DP)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. mysql时间与字符串之间相互转换

    1.时间转字符串 DATE_FORMAT(日期,格式字符串) SELECT DATE_FORMAT(NOW(), '%Y-%m-%d %H:%i:%s'); 2.字符串转时间 STR_TO_DATE( ...

  3. python并发编程-线程和锁

    什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: from multiprocessing import Pr ...

  4. python 递归和二分法

    一 内置函数 1. revserd 翻转,返回的是迭代器 # 将 s 倒置 s = '不是上海自来水来自海上' # 方法一 print(s[::-1]) # 方法二 s1 = reversed(s) ...

  5. iframe页面刷新问题

    1.问题:当iframe的页面加载过再关闭之后,如果iframe的src没有发生变化,js不会重新加载,再次打开页面不会刷新: 2.解决方法:关闭页面时清空src,再次打开时即可重新加载最新数据. $ ...

  6. Maven学习(三)maven原理概念详述

    maven相关概念 maven坐标 Maven世界拥有大量构建,当我们需要引用依赖包是,需要用一个用来唯一标识去确定唯一的一个构建.如果拥有了统一规范,就可以把查找工作交给机器. 类似于空间找点的坐标 ...

  7. SQLServer 学习笔记之超详细基础SQL语句 Part 6

    Sqlserver 学习笔记 by:授客 QQ:1033553122 -----------------------接Part 5------------------- 28 聚合函数 --求平均分 ...

  8. Android 优秀开源项目

    以下是本人日常工作中收集的比较不错的Android开源项目 roottools: RootTools gives Rooted developers easy access to common roo ...

  9. 准备开发一个运行在Android上的JavaME模拟器

    在一个虚拟机A上运行另外一个虚拟机B看起来是挺不靠谱的一件事,在手机上运行某个虚拟机也不怎么靠谱.并且如果虚拟机A运行在手机上这个听起来就更不靠谱了.但是很多人就在做这样的事.比如在在手机上运行DOS ...

  10. Expo大作战(二十七)--expo sdk api之Util(expo自带工具类),tackSnapshotAsync,Svg,SQLite

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...