背景:

sparse PCA 较 PCA来说更具可解释性,泛化性。

部分符号

\(\mathrm{X} \in \mathbb{R}^{n \times p}\)
假设样本已经中心化(每一个行为一个样本)
\(\mathrm{X}=[X_1,X_2,\ldots, X_p]\)
\(X_j = (x_{1j}, x_{2j},\ldots, x_{nj})\)
\(\mathrm{X = UDV^{T}}\)
\(\mathrm{Z=UD}\)为主成分(PCs)

创新点

1.将PCA问题转化为一个回归问题,利用最小角回归,可以高效求解Lasso问题。
2.二重迭代求解,sparse PCA问题。

文章梗概

The LASSO AND THE ELASTIC NET

普通的Lasso


\(Y=(y_1,y_2,\ldots,y_n)^{\mathrm{T}}\)
这个方法的问题在于,当\(p \gg n\)的时候,\(\hat{\beta}\)最多有n个非零项(这是为什么呢?)

The elastic net

将PCA改造为回归问题

定理一 考虑单个向量(需要先进行SVD)

定理二 单个向量(无需进行SVD版本)

定理三 多个向量(无需进行SVD, 非LASSO,非elastic net)

目标函数(最终版)

俩步求解

定理四 A given B的理论支撑(存疑)

算法一

方差计算

因为稀疏化后的向量,既不具有空间上(往往)的正交性,也不具有概率上(\(\mathrm{x^{T}Cy}=0\))的正交性。这里,Zou 考虑的是概率上的正交性,将得到的向量正交化,把余量相加得最后的方差。

复杂度

\(n > p\) : \(np^2+mO(p^3)\) #m是迭代次数

\(p \gg n\) 算法改进

简单来说,就是把step2改进下,原来需要求解一个elastic net问题,现在直接进行截断,自然会减轻不少负担。

数值实验(pitprops)

Sparse Principal Component Analysis的更多相关文章

  1. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  2. Full Regularization Path for Sparse Principal Component Analysis

    目录 背景 Notation Sparse PCA Semidefinite Relaxation Low Rank Optimization Sorting and Thresholding 背景 ...

  3. Generalized Power Method for Sparse Principal Component Analysis

    目录 重点 算法 这篇文章,看的晕晕的,但是被引用了400多次了,就简单地记一笔. 这个东西,因为\(\ell_1\)范数,所以会稀疏化,当然,和\(\gamma\)有关. 重点 我想重点写的地方是下 ...

  4. Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)

    目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...

  5. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  6. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  7. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

  8. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  9. Principal Component Analysis(PCA)

    Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...

随机推荐

  1. 实现Github和Coding仓库等Git服务托管更新

    如何使Github.Coding.Gitee 码云 同时发布更新,多个不同Git服务器之间同时管理部署发布提交 缘由 因为在Github上托管的静态页面访问加载速度较为缓慢,故想在Coding上再建一 ...

  2. Python 入门:基本语法

    对于多数从其他编程语言转入Python的来说,或多或少会有些不习惯.如果沿用其他编程语言的语法来写Python代码,那么碰壁是不可避免的了. 本文是基于我看了两个小时的官方文档(Python 2.7 ...

  3. March 08th, 2018 Week 10th Thursday

    Easy come, easy go. 易得则易失. Easy come, easy go, I finally undestand the phrase through somewhat hard ...

  4. Ubuntu 12.04上安装R语言

    Ubuntu 12.04上安装R语言 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ R的安装 sudo gedit /etc/apt/sources. ...

  5. MATLAB—求直线或者线段之间的交点坐标

    function CrossPoint( ) %% 求两条直线的交点坐标 x1 = [7.8 8]; y1 = [0.96 0.94]; %line2 x2 = [8.25 8.25]; y2 = [ ...

  6. java中伪共享问题

    伪共享(False Sharing) 原文地址:http://ifeve.com/false-sharing/ 作者:Martin Thompson  译者:丁一 缓存系统中是以缓存行(cache l ...

  7. Thread.interrupt()

        作者:Intopass链接:https://www.zhihu.com/question/41048032/answer/89431513来源:知乎著作权归作者所有.商业转载请联系作者获得授权 ...

  8. sqrt函数

    import numpy as np B = np.arange(3) print (B) print (np.sqrt(B)) #求平方根

  9. 分享一个前后端分离的web项目(vue+spring boot)

    Github地址:https://github.com/smallsnail-wh 前端项目名为wh-web 后端项目名为wh-server 项目展示地址为我的github pages(https:/ ...

  10. 有时间研究一下Maven打包插件细节

    Maven工作分为多个阶段,具体阶段参考:https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html ...