背景:

sparse PCA 较 PCA来说更具可解释性,泛化性。

部分符号

\(\mathrm{X} \in \mathbb{R}^{n \times p}\)
假设样本已经中心化(每一个行为一个样本)
\(\mathrm{X}=[X_1,X_2,\ldots, X_p]\)
\(X_j = (x_{1j}, x_{2j},\ldots, x_{nj})\)
\(\mathrm{X = UDV^{T}}\)
\(\mathrm{Z=UD}\)为主成分(PCs)

创新点

1.将PCA问题转化为一个回归问题,利用最小角回归,可以高效求解Lasso问题。
2.二重迭代求解,sparse PCA问题。

文章梗概

The LASSO AND THE ELASTIC NET

普通的Lasso


\(Y=(y_1,y_2,\ldots,y_n)^{\mathrm{T}}\)
这个方法的问题在于,当\(p \gg n\)的时候,\(\hat{\beta}\)最多有n个非零项(这是为什么呢?)

The elastic net

将PCA改造为回归问题

定理一 考虑单个向量(需要先进行SVD)

定理二 单个向量(无需进行SVD版本)

定理三 多个向量(无需进行SVD, 非LASSO,非elastic net)

目标函数(最终版)

俩步求解

定理四 A given B的理论支撑(存疑)

算法一

方差计算

因为稀疏化后的向量,既不具有空间上(往往)的正交性,也不具有概率上(\(\mathrm{x^{T}Cy}=0\))的正交性。这里,Zou 考虑的是概率上的正交性,将得到的向量正交化,把余量相加得最后的方差。

复杂度

\(n > p\) : \(np^2+mO(p^3)\) #m是迭代次数

\(p \gg n\) 算法改进

简单来说,就是把step2改进下,原来需要求解一个elastic net问题,现在直接进行截断,自然会减轻不少负担。

数值实验(pitprops)

Sparse Principal Component Analysis的更多相关文章

  1. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  2. Full Regularization Path for Sparse Principal Component Analysis

    目录 背景 Notation Sparse PCA Semidefinite Relaxation Low Rank Optimization Sorting and Thresholding 背景 ...

  3. Generalized Power Method for Sparse Principal Component Analysis

    目录 重点 算法 这篇文章,看的晕晕的,但是被引用了400多次了,就简单地记一笔. 这个东西,因为\(\ell_1\)范数,所以会稀疏化,当然,和\(\gamma\)有关. 重点 我想重点写的地方是下 ...

  4. Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)

    目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...

  5. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  6. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  7. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

  8. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  9. Principal Component Analysis(PCA)

    Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...

随机推荐

  1. mssql sqlserver 批量删除所有存储过程的方法分享

    转自:http://www.maomao365.com/?p=6864 摘要: 下文讲述采用sql脚本批量删除所有存储过程的方法,如下所示: 实验环境:sqlserver 2008 R2 平常使用sq ...

  2. 前后端分离djangorestframework——权限组件

    权限permissions 权限验证必须要在认证之后验证 权限组件也不用多说,读了源码你就很清楚了,跟认证组件很类似 具体的源码就不展示,自己去读吧,都在这里: 局部权限 设置model表,其中的ty ...

  3. window.location.href刷新页面

    刷新当前页 window.location.href=window.location.href; 或者 window.location.href="当前URL",例如 window ...

  4. 【2018.08.19 C与C++基础】编程语言类型系统简介(草稿)

    还是先占坑,等理顺了思路再写,学过的东西总是无法系统化,感觉什么都知道一点,但一深入却是一脸懵逼. 这真的是个问题,看似很努力,却无法成为一个master. 参考链接: 1. 编程语言的类型系统为何如 ...

  5. WPF之DataGrid应用 翻页

    前几天打算尝试下DataGrid的用法,起初以为应该很简单,可后来被各种使用方法和功能实现所折磨.网络上的解决方法太多,但也太杂.没法子,我只好硬着头皮阅览各种文献资料,然后不断的去尝试,总算小有成果 ...

  6. Android-SpinKit 进度条 (ProgressBar)

    项目地址: https://github.com/ybq/Android-SpinKit 类别: 进度条 (ProgressBar) 打分: ★★★★★ 更新: 2016-03-28 11:17 大小 ...

  7. iptables snat 和dnat说明

    iptables中的snat和dnat是非常有用的,感觉他们二个比较特别,所以单独拿出来说一下. dnat是用来做目的网络地址转换的,就是重写包的目的IP地址.如果一个包被匹配了,那么和它属于同一个流 ...

  8. Jenkins控制台显示乱码

    方案: 解决控制台中文乱码问题: 点击左侧“系统管理”——右侧选择“系统设置”——“全局属性”,选择第一项:Environment variables,键值对列表,点击增加: 键:LANG 值:zh. ...

  9. 使用ECharts来实现地图下钻功能(某省的市级下钻到县级)

    var cityMap = { "长沙市": "430100", "株洲市": "430200", "湘潭市& ...

  10. Arduino和ESP8266引脚图

    Arduino的引脚图 https://www.geek-workshop.com/thread-11826-1-1.html ESP8266 https://item.taobao.com/item ...