传送门

https://www.cnblogs.com/violet-acmer/p/9852294.html

题解:

  相关变量解释:

 int M,N;
int plant[maxn][maxn];//草场情况
struct Node
{
int status;//状态
int res;//方案
Node(int a=,int b=):status(a),res(b){}
};
vector<Node >dp[maxn];//dp[i][j] : 第i行的j状态能达到的最大方案

  根据dp定义,很容易写出状态转移方程:

 for(int i=;i <= M;++i)
{
for(int j=;j <= maxNum;++j)
{
int res=Find(j,i-);//查找与上一次决策没有相邻的草地的决策个数
//isSat1() : 判断草地是否合法,即判断不含有相邻草场
//isSat2() : 判断当前决策是否有相邻的草地
if(isSat1(i,j) && isSat2(j) && res)
dp[i].pb(Node(j,res));
}
}

AC代码:

 #include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
#define R(x) (1<<x)
#define pb(x) push_back(x)
const int MOD=1e8;
const int maxn=+; int M,N;
int plant[maxn][maxn];//草场情况
struct Node
{
int status;//状态
int res;//方案
Node(int a=,int b=):status(a),res(b){}
};
vector<Node >dp[maxn];//dp[i][j] : 第i行的j状态能达到的最大方案
bool isSat1(int i,int x)//判断草地是否合法
{
int index=N;
for(int j=;j <= N;++j)
if(plant[i][index--] == && (R(j-)&x) != )
return false;
return true;
}
bool isSat2(int x)//判断当前决策是否有相邻的草地
{
for(int j=;;++j)
{
int val=R(j-)+R(j-);
if(val > x)
return true ;
if((val&x) == val)
return false;
}
return true;
}
int Find(int now,int i)//查找与上一次决策没有相邻的草地的决策个数
{
int res=;
for(int j=;j < dp[i].size();++j)
{
Node node=dp[i][j];
int pre=node.status;
if((pre&now) == )
res=res%MOD+node.res;
}
return res%MOD;
}
void Solve()
{
int maxNum=(<<N)-;
dp[].pb(Node(,));
for(int i=;i <= M;++i)
{
for(int j=;j <= maxNum;++j)
{
int res=Find(j,i-);
if(isSat1(i,j) && isSat2(j) && res)
dp[i].pb(Node(j,res));
}
}
int res=;
for(int i=;i < dp[M].size();++i)
res=res%MOD+dp[M][i].res;
printf("%d\n",res%MOD);
}
int main()
{
scanf("%d%d",&M,&N);
for(int i=;i <= M;++i)
for(int j=;j <= N;++j)
scanf("%d",plant[i]+j);
Solve();
}

洛谷 P1879 玉米田(状压DP入门题)的更多相关文章

  1. 洛谷P3959 宝藏(状压dp)

    传送门 为什么感觉状压dp都好玄学……FlashHu大佬太强啦…… 设$f_{i,j}$表示当前选的点集为$i$,下一次要加入的点集为$j$时,新加入的点和原有的点之间的最小边权.具体的转移可以枚举$ ...

  2. 洛谷 P3112 后卫马克 —— 状压DP

    题目:https://www.luogu.org/problemnew/show/P3112 状压DP...转移不错. 代码如下: #include<iostream> #include& ...

  3. 【洛谷4941】War2 状压Dp

    简单的状压DP,和NOIP2017 Day2 找宝藏 代码几乎一样.(比那个稍微简单一点) f[i][j] ,i代表点的状态,j是当前选择的点,枚举上一个选到的点k 然后从f[i-(1<< ...

  4. 洛谷 3959 宝藏——枚举+状压dp

    题目:https://www.luogu.org/problemnew/show/P3959 原来写了个不枚举起点的状压dp. #include<iostream> #include< ...

  5. 洛谷P1879 玉米田

    题目描述 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他 ...

  6. 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$

    正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...

  7. 洛谷 P1433 吃奶酪 状压DP

    题目描述 分析 比较简单的状压DP 我们设\(f[i][j]\)为当前的状态为\(i\)且当前所在的位置为\(j\)时走过的最小距离 因为老鼠的坐标为\((0,0)\),所以我们要预处理出\(f[1& ...

  8. poj 3254 状压dp入门题

    1.poj 3254  Corn Fields    状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...

  9. 洛谷P2473奖励关——状压DP

    题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...

随机推荐

  1. 微服务架构中APIGateway原理

    背景 我们知道在微服务架构风格中,一个大应用被拆分成为了多个小的服务系统提供出来,这些小的系统他们可以自成体系,也就是说这些小系统可以拥有自己的数据库,框架甚至语言等,这些小系统通常以提供 Rest ...

  2. eclipse 基础快捷键。

    批量修改:Alt+Shift+R 查看java源码:1.选中方法,比如System.out.println()的 println 2.F3 代码格式化:ctrl+shift+f (注意: 这个快捷键和 ...

  3. Lodop中特殊符号¥打印设计和预览不同

    Lodop中¥符号样式改变问题 Lodop中对超文本样式的解析,虽然说是按照调用的本机ie引擎,但是调用的ie版本可能不同,导致在ie下是一种样式,预览又是另一种样式.可能是有些样式没有具体设置,走的 ...

  4. ExportHandler.ashx

    using KYZWeb.Common;using Liger.Data;//using Microsoft.Office.Interop.Excel;using System;using Syste ...

  5. 实验吧 WEB 头有点大

    看到了良心的提示,http header,之后看到了要求.NET framework 9.9 英国 IE,我想想.NET好像还没有更新到9.9,就无视了这重要的提示. 我就看了一眼题解,发现burps ...

  6. Bootstrap modal 模态框垂直居中显示补丁

    <script> $.fn.modal.Constructor.prototype.adjustDialog1 = function(){ var modalIsOverflowing = ...

  7. LNMP平台部署

    LNAP平台概述 百度百科 LNMP代表的就是:Linux系统下Nginx+MySQL+PHP这种网站服务器架构. Linux是一类Unix计算机操作系统的统称,是目前最流行的免费操作系统.代表版本有 ...

  8. Tomcat服务的安装与配置

    介绍 百度百科 Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun 和其他一些公司及个人共同开 ...

  9. POJ3013-Big Christmas Tree-最短路

    题意:给出一个图,每个节点都有权值,每条边也有费用.要求建立一颗树,使总花费最小.树上每连一条边的花费定义为孩子节点权值和×此边费用. 做法:分析可知,最终的答案为所有节点的权值×到根节点的距离.可以 ...

  10. 基于 __new__ 方法的单例模式

    单例模式定义 首次实例化创建实例化对象 之后的每次实例化都用最初的实例化对象 即单实例模式 __new__ 的原理 __new__ 方法可以在 __init__ 方法执行 这样可以在初始化之前进行一系 ...