Scrambled Polygon
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 8636   Accepted: 4105

Description

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex.

A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".) 

The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem.

The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0).

To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point. 
 

Input

The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear. 

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon's border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below. 

Sample Input

0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10

Sample Output

(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)

Source


显然极角排序 用叉积 但WA好多次最后发现必须要保证第一个点在开始,排序直接跳过就行了
或者强行用凸包做也可以,因为凸包结束后就是极角拍好序的了
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
const double eps=1e-; inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
} struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
};
typedef Vector Point;
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;} int n,x,y;
Point p[N],S;
bool cmpPolar(Point a,Point b){
return sgn(Cross(a,b))>;
}
int main(int argc, const char * argv[]) {
while(scanf("%d",&x)!=EOF){
y=read();
p[++n]=Point(x,y);
}
sort(p+,p++n,cmpPolar);
for(int i=;i<=n;i++) printf("(%.0f,%.0f)\n",p[i].x,p[i].y);
return ;
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const double eps=1e-;
const double pi=acos(-); inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
} struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
//return x<a.x||(x==a.x&&y<a.y);
return sgn(x-a.x)<||(sgn(x-a.x)==&&sgn(y-a.y)<);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
double DisPP(Point a,Point b){
Point t=b-a;
return sqrt(t.x*t.x+t.y*t.y);
}
int ConvexHull(Point p[],int n,Point ch[]){//cannot handle repeat point
sort(p+,p++n);
int m=;
for(int i=;i<=n;i++){
while(m>&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
int k=m;
for(int i=n-;i>=;i--){
while(m>k&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
if(n>) m--;//the first point
return m;
}
int n,x,y;
double ans;
Point p[N],ch[N];
int main(int argc, const char * argv[]) {
while(scanf("%d",&x)!=EOF){
y=read();
p[++n]=Point(x,y);
}
ConvexHull(p,n,ch);
Point S(,);int p;
for(p=;p<=n;p++) if(ch[p]==S) break; for(int i=p;i<=n;i++) printf("(%.0f,%.0f)\n",ch[i].x,ch[i].y);
for(int i=;i<p;i++) printf("(%.0f,%.0f)\n",ch[i].x,ch[i].y);
return ;
}
 

POJ 2007 Scrambled Polygon [凸包 极角排序]的更多相关文章

  1. poj 2007 Scrambled Polygon(极角排序)

    http://poj.org/problem?id=2007 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6701   A ...

  2. POJ 2007 Scrambled Polygon 凸包点排序逆时针输出

    题意:如题 用Graham,直接就能得到逆时针的凸包,找到原点输出就行了,赤果果的水题- 代码: /* * Author: illuz <iilluzen[at]gmail.com> * ...

  3. POJ 2007 Scrambled Polygon 凸包

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7214   Accepted: 3445 ...

  4. 简单几何(极角排序) POJ 2007 Scrambled Polygon

    题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time ...

  5. POJ 2007 Scrambled Polygon(简单极角排序)

    水题,根本不用凸包,就是一简单的极角排序. 叉乘<0,逆时针. #include <iostream> #include <cstdio> #include <cs ...

  6. POJ 2007 Scrambled Polygon (简单极角排序)

    题目链接 题意 : 对输入的点极角排序 思路 : 极角排序方法 #include <iostream> #include <cmath> #include <stdio. ...

  7. poj 2007 Scrambled Polygon 极角排序

    /** 极角排序输出,,, 主要atan2(y,x) 容易失精度,,用 bool cmp(point a,point b){ 5 if(cross(a-tmp,b-tmp)>0) 6 retur ...

  8. POJ 2007 Scrambled Polygon 极角序 水

    LINK 题意:给出一个简单多边形,按极角序输出其坐标. 思路:水题.对任意两点求叉积正负判断相对位置,为0则按长度排序 /** @Date : 2017-07-13 16:46:17 * @File ...

  9. ●POJ 2007 Scrambled Polygon

    题链: http://poj.org/problem?id=2007 题解: 计算几何,极角排序 按样例来说,应该就是要把凸包上的i点按 第三像限-第四像限-第一像限-第二像限 的顺序输出. 按 叉积 ...

随机推荐

  1. rexray在CentOS上不能创建ceph rbd的docker volume问题定位

    背景 我们通过docker的rexray插件来创建ceph rbd设备的docker volume,但总提示创建失败. # docker volume create --driver=rexray - ...

  2. 云主机与vps虚拟主机的区别

    云计算时代,云主机其可扩展性.价格便宜.安全可靠的特性深受企业和开发者欢迎,但目前有些IDC企业,新瓶装旧酒,将虚拟主机.VPS进行包装推出所谓的云主机服务,为了帮助用户更好的辨别和挑选云主机,下文详 ...

  3. asp.net -mvc框架复习(6)-基于MVC实现简单计算器

    1.创建好文件夹 2.视图层代码编写 <%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<dyn ...

  4. FreeMarker 集合遍历

    freemarker list (长度,遍历,下标,嵌套,排序) 1. freemarker获取list的size : Java ArrayList<String> list = new ...

  5. 2017-07-07(zip unzip gzip gunzip)

    zip压缩格式 zip zip 压缩文件名   源文件    (压缩文件) zip -r    压缩文件名   源文件   (压缩目录) unzip unzip 压缩名 .gz压缩格式 gzip gz ...

  6. C/C++基础知识总结

    [006] HIWORD宏取高16位. [005] 使用strcmp需判断参数是否为NULL [004] main函数的第三个参数envp 有的编译器支持三个参数的main函数,但不推荐这么写. [0 ...

  7. CSS--开篇

    1,什么是CSS? 层叠样式表(Cascading Style Sheet ),定义了如何显示HTML元素,用来控制网页的样式和布局. 引入CSS后:HTML标记专门用于定义网页的内容,而使用CSS来 ...

  8. jdk源码->集合->ArrayList

    类的属性 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomA ...

  9. Go基础--goroutine和channel

    goroutine 在go语言中,每一个并发的执行单元叫做一个goroutine 这里说到并发,所以先解释一下并发和并行的概念: 并发:逻辑上具备同时处理多个任务的能力 并行:物理上在同一时刻执行多个 ...

  10. java数组基础

    */ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...