Description

Lamps-O-Matic company assembles very large chandeliers. A chandelier consists of multiple levels. On the first level crystal pendants are attached to the rings. Assembled rings and new pendants are attached to the rings of the next level, and so on. At the end there is a single large ring -- the complete chandelier with multiple smaller rings and pendants hanging from it.  A special-purpose robot assembles chandeliers. It has a supply of crystal pendants and empty rings, and a stack to store elements of a chandelier during assembly. Initially the stack is empty. Robot executes a list of commands to assemble a chandelier. On command "a" robot takes a new crystal pendant and places it on the top of the stack. On command "1" to "9" robot takes the corresponding number of items from the top of the stack and consecutively attaches them to the new ring. The newly assembled ring is then placed on the top of the stack. At the end of the program there is a single item on the stack -- the complete chandelier.  Unfortunately, for some programs it turns out that the stack during their execution needs to store too many items at some moments. Your task is to optimize the given program, so that the overall design of the respective chandelier remains the same, but the maximal number of items on the stack during the execution is minimal. A pendant or any complex multi-level assembled ring count as a single item of the stack.  The design of a chandelier is considered to be the same if each ring contains the same items in the same order. Since rings are circular it does not matter what item is on the top of the stack when the robot receives a command to assemble a new ring, but the relative order of the items on the stack is important. For example, if the robot receives command "4" when items < i1, i2, i3, i4 > are on the top of the stack in this order (i1 being the topmost), then the same ring is also assembled if these items are arranged on the stack in the following ways: < i2, i3, i4, i1 >, or < i3, i4, i1, i2 >, or < i4, i1, i2, i3 >.

Input

The input contains a single line with a valid program for the robot. The program consists of at most 10 000 characters.

Output

On the first line of the output file write the minimal required stack capacity (number of items it can hold) to assemble the chandelier. On the second line write some program for the assembly robot that uses stack of this capacity and results in the same chandelier.

题目大意:太难说了不写了。

思路: 大概就是递推处理对每个数字组合起来所需要的最小栈吧……思路挺难搞的我已经不会描述了……


http://hi.baidu.com/billdu/item/50dd9fb49364269619469705

方法就是每到一个数字命令,就枚举前面的元素怎样排列。由于保证了元素数目不多于9,所以圆排列只用枚举9个,时间上绰绰有余。

枚举一个情况下的计算是重点。设定任意一个元素【操作时要占用的最大堆栈数】为m,比如说,组装这个元素以前栈中有5个元素,中间的某一步栈中有12个元素,并且自始至终没超过12个,那么该元素的的M = 7。单个元素的M为1。(这很容易理解……)

然后设某数字指令要拼装的的元素集合为A,元素的安装位置设为p的话(头一个元素是第0个,之后是第1个,依此类推),在这种枚举的情况下目标元素的m = max{ p(E) + m(E), E∈A },因为对于每一个元素,在这之前已经安装了p(E)个元素,安装本元素需要再开m(E)的空间。枚举所有情况,找出最小的目标m记录下来,直到最后最终的元素的m值就是所要用的栈。

输出方案很简单,只需要递归输出,注意顺序既可。


 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cctype>
using namespace std; const int MAXN = ; char s[MAXN];
int src[MAXN], n; void init() {
int i;
for(i = ; s[i]; ++i)
src[i] = isdigit(s[i]) * (s[i] - '');
n = i;
} int best[MAXN];
int ans[MAXN][];
int pos[];
int stk[MAXN], top; void next(int *arr, int n) {
for(int i = ; i < n; ++i)
if(++arr[i] >= n) arr[i] = ;
} void solve(int n) {
if(src[n] == ) {
best[n] = ;
stk[top++] = n;
return ;
}
int &len = src[n];
for(int i = ; i < len; ++i) pos[i] = i;
for(int i = ; i < len; ++i) {
int tmp = len;
for(int j = ; j < len; ++j)
tmp = max(tmp, j + best[stk[top - len + pos[j]]]);
if(best[n] == || tmp < best[n]) {
best[n] = tmp;
for(int j = ; j < len; ++j) ans[n][j] = stk[top - len + pos[j]];
}
next(pos, len);
}
top -= len;
stk[top++] = n;
} void dfs(int n) {
for(int i = ; i < src[n]; ++i)
if(src[ans[n][i]]) dfs(ans[n][i]);
else putchar('a');
printf("%d", src[n]);
} int main() {
scanf("%s", s);
init();
for(int i = ; i < n; ++i) solve(i);
printf("%d\n", best[n - ]);
dfs(n - );
puts("");
}

POJ 2161 Chandelier(动态规划)的更多相关文章

  1. POJ 2161 Chandelier(树状DP)

    一.题意 首先是对题目的翻译.给出一个长长的字符串,这个字符串描述了一个吊灯.对于给字符串只有两种操作数——'a'为一个吊灯灯珠,将改灯珠入栈,一位阿拉伯数字K,代表一个环,将把该数字前面k位数都出栈 ...

  2. poj 3783 Balls 动态规划 100层楼投鸡蛋问题

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...

  3. poj 2229 一道动态规划思维题

    http://poj.org/problem?id=2229 先把题目连接发上.题目的意思就是: 把n拆分为2的幂相加的形式,问有多少种拆分方法. 看了大佬的完全背包代码很久都没懂,就照着网上的写了动 ...

  4. [POJ 2063] Investment (动态规划)

    题目链接:http://poj.org/problem?id=2063 题意:银行每年提供d种债券,每种债券需要付出p[i]块钱,然后一年的收入是v[i],到期后我们把本金+收入取出来作为下一年度本金 ...

  5. [POJ 2923] Relocation (动态规划 状态压缩)

    题目链接:http://poj.org/problem?id=2923 题目的大概意思是,有两辆车a和b,a车的最大承重为A,b车的最大承重为B.有n个家具需要从一个地方搬运到另一个地方,两辆车同时开 ...

  6. POJ 1088 滑雪 -- 动态规划

    题目地址:http://poj.org/problem?id=1088 Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当 ...

  7. poj 1159 Palindrome - 动态规划

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well ...

  8. poj 2385【动态规划】

    poj 2385 Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14007   Accepte ...

  9. poj 1837 Balance 动态规划 (经典好题,很锻炼思维)

    题目大意:给你一个天平,并给出m个刻度,n个砝码,刻度的绝对值代表距离平衡点的位置,并给出每个砝码的重量.达到平衡状态的方法有几种. 题目思路:首先我们先要明确dp数组的作用,dp[i][j]中,i为 ...

随机推荐

  1. Openresty最佳案例 | 第8篇:RBAC介绍、sql和redis模块工具类

    转载请标明出处: http://blog.csdn.net/forezp/article/details/78616738 本文出自方志朋的博客 RBAC介绍 RBAC(Role-Based Acce ...

  2. 菜鸟笔记 -- Chapter 6.1 面向对象概述

    6.1 面向对象概述 在程序开发的初期人们使用结构化开发语言,但是随着时间的流逝,软件的规模越来越庞大,结构化语言的弊端逐渐暴露出来,开发周期被无限制拖延,产品质量也不尽如人意,人们终于发现结构化语言 ...

  3. 『ACM C++』Virtual Judge | 两道基础题 - The Architect Omar && Malek and Summer Semester

    这几天一直在宿舍跑PY模型,学校的ACM寒假集训我也没去成,来学校的时候已经18号了,突然加进去也就上一天然后排位赛了,没学什么就去打怕是要被虐成渣,今天开学前一天,看到最后有一场大的排位赛,就上去试 ...

  4. linux 2.6升级Python2.7 ./configure 报错问题

    升级2.7.3使用命令./configure --prefix=/usr/local/python2.7.3时,出现以下错误:checking build system type... x86_64- ...

  5. bootstrap Table动态绑定数据并自定义字段显示值

    第一步:我们在官网下载了bootstrap 的文档,并在项目中引入bootstrap table相关js文件,当然,也要记得引入jquery文件 大概如图: 第二步:定义一个table控件 第三步:j ...

  6. jquery点击li 获取当前父节点所在类的索引

    jquery点击li 获取当前父节点所在类的索引 $('.jbcz').find('.content li').click(function(){ //alert($('.jbcz').find('. ...

  7. Layabox进阶之资源加载

    资源加载失败,图片资源默认类型是image 如果是sprite可能找不到. 资源的加载顺序,场景被加载出来时,要判断该场景的资源是否都已经加载到. 点击A界面弹出来B界面,A界面的资源要在B界面之前加 ...

  8. C# Regex正则验证规则

    using System; using System.Text.RegularExpressions; namespace MetarCommonSupport { /// <summary&g ...

  9. Waterline从概念到实操

    Waterline基本介绍 Waterline是什么 Waterline是下一代存储和检索引擎,也是Sails框架中使用的默认ORM . ORM的基本概念 Object Relational Mapp ...

  10. Go语言的标准net库使用

    Go语言的标准net库使用 与大多数语言一样,Go的标准库是很全的,因为Go的出现本来就是为了网络通信的高并发实现,所以其相关的网络库封装得很简洁,也更加的易读.这里对使用到的api进行记录. net ...