http://www.lydsy.com/JudgeOnline/problem.php?id=1227 (题目链接)

题意

  一个n*m的公墓,一个点上要么是墓地,要么是常青树,给出一个数K,并规定每块墓地的虔诚度是以这个墓地为中心上下左右分别选择K棵常青树的方案数。问整个公墓所有墓地的虔诚度之和。

Solution

  看到棋盘范围大小与点的个数的悬殊差距,首先就想到了离散化,然而离散化之后怎么统计答案呢?

  考虑对于所有点以x轴为第一关键字,y轴为第二关键字进行排序,那么对答案有贡献的墓地坐标一定在已经出现过的x坐标和y坐标中,因为一块有贡献的墓地不可能上下或左右没有常青树。所以我们这里只考虑每次计算一列中的墓地对答案的贡献,然而怎么搞呢。。。

  不会了,请出hzwer:

  先离散横纵坐标

  按照y进行排序,从下往上处理每一行

  l[a],r[a],u[a],d[a]表示一个点上下左右的点数,可以预处理,也可以边做边记录

  如果a,b在同一行,则ans+=c(l[a]+1(包括a),k)*c(r[b]+1,k)再分别乘上ab间的每一个点的c(u[i],k)*c(d[i],k)

  但是这样复杂度为n^2

  于是我们要用树状数组维护a到b所有点的c(u[i],k)*c(d[i],k)之和

  可以这样考虑

  比如某一列某一行有一个点

  在扫描这行之下的时候,这个点是算在u[i]里的,但是扫描这行之上时算在了d[i]中

  于是我们从左往右处理某行的某一个点时,要将树状数组中该点横坐标位置上的数进行修改

  修改的值为就是现在的c(u[i],k)*c[d[i],k]减去原来的,也就是c(u[i],k)*c[d[i],k]-c(u[i]+1,k)*c[d[i]-1,k]

  于是就是树状数组维护一下ok了。

细节

  最后答案要加模再取模,因为可能减成负数。

代码

// bzoj1227
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define MOD 2147483648ll
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
struct data {int x,y;}a[maxn];
LL C[maxn][20],c[maxn];
int n,m,W,K,q[maxn],h[maxn],l[maxn],num[maxn]; bool cmp(data a,data b) {
return a.x==b.x ? a.y<b.y : a.x<b.x;
}
void calC() {
for (int i=0;i<=W*2;i++) C[i][0]=1;
for (int i=1;i<=W*2;i++)
for (int j=1;j<=min(i,K);j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
} int lowbit(int x) {
return x&-x;
}
LL query(int x) {
LL s=0;
for (int i=x;i;i-=lowbit(i)) s=(s+c[i])%MOD;
return s;
}
void add(int x,LL val) {
for (int i=x;i<=W*2;i+=lowbit(i)) c[i]=(c[i]+val)%MOD;
} int main() {
scanf("%d%d",&n,&m);
scanf("%d",&W);
for (int i=1;i<=W;i++) {
scanf("%d%d",&a[i].x,&a[i].y);
q[i*2-1]=a[i].x;q[i*2]=a[i].y;
}
scanf("%d",&K);
sort(q+1,q+1+W*2);
int tot=unique(q+1,q+1+W*2)-q-1;
for (int i=1;i<=W;i++) {
a[i].x=lower_bound(q+1,q+1+tot,a[i].x)-q;
a[i].y=lower_bound(q+1,q+1+tot,a[i].y)-q;
h[a[i].y]++;l[a[i].x]++;
}
sort(a+1,a+1+W,cmp);
calC();
LL cnt=0,ans=0;
for (int i=1;i<=W;i++) {
if (i>1 && a[i].x==a[i-1].x) {
cnt++;
LL t1=query(a[i].y-1)-query(a[i-1].y);
LL t2=C[cnt][K]*C[l[a[i].x]-cnt][K]%MOD;
ans=(ans+t1*t2%MOD)%MOD;
}
else cnt=0;
num[a[i].y]++;
LL tmp=C[num[a[i].y]][K]*C[h[a[i].y]-num[a[i].y]][K];
tmp-=C[num[a[i].y]-1][K]*C[h[a[i].y]-num[a[i].y]+1][K];
tmp=(tmp+MOD)%MOD;
add(a[i].y,tmp);
}
printf("%lld",(ans+MOD)%MOD);
return 0;
}

【bzoj1227】 SDOI2009—虔诚的墓主人的更多相关文章

  1. BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*

    BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...

  2. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  3. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  4. BZOJ1227 [SDOI2009]虔诚的墓主人 【树状数组】

    题目 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地.当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地.为 ...

  5. [bzoj1227] [SDOI2009]虔诚的墓主人

    终于填上了这个万年巨坑....从初二的时候就听说过这题...然后一直不敢写QAQ 现在感觉也不是很烦(然而我还是写麻烦了 离散化一波,预处理出组合数什么的.. 要维护对于当前行,每列上方和下方节点凑出 ...

  6. bzoj1227: [SDOI2009]虔诚的墓主人(树状数组,组合数)

    传送门 首先,对于每一块墓地,如果上下左右各有$a,b,c,d$棵树,那么总的虔诚度就是$C_k^a*C_k^b*C_k^c*C_k^d$ 那么我们先把所有的点都给离散,然后按$x$为第一关键字,$y ...

  7. 【BZOJ1227】[SDOI2009]虔诚的墓主人(线段树)

    [BZOJ1227][SDOI2009]虔诚的墓主人(线段树) 题面 BZOJ 洛谷 题解 显然发现答案就是对于每一个空位置,考虑上下左右各有多少棵树,然后就是这四个方向上树的数量中选\(K\)棵出来 ...

  8. bzoj1227 P2154 [SDOI2009]虔诚的墓主人

    P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...

  9. BZOJ 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1078  Solved: 510[Submit][Stat ...

  10. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

随机推荐

  1. TCP流量控制与拥塞控制

    为了更好地对传输层进行拥塞控制,因特网建议标准定义了以下四种算法:慢启动.拥塞避免.快重传和快恢复. 1 接收窗口rwnd与拥塞窗口cwnd 发送方在确定发送报文段的速率时,既要根据接收方的接收能力, ...

  2. canvas 绘制圆角矩形

    <!DOCTYPE HTML> <head> <meta charset = "utf-8"> <title>canvas</ ...

  3. XML 序列化与反序列化

    XML序列化与反序列化 1.将一个类转化为XML文件 /// <summary> /// 对象序列化成XML文件 /// </summary> /// <param na ...

  4. spring的路径通配符

    Spring提供了强大的Ant模式通配符匹配,从同一个路径能匹配一批资源. Ant路径通配符支持"?"."*"."**",注意通配符匹配不包 ...

  5. eclipse svn分支与合并操作

    以前做项目的时候没有用过svn的分支合并操作,今天用到了,刚开始还真不会啊.最后查了下就是这么的方便.专门记录下来. 原文来自:http://blog.csdn.net/lisq037/article ...

  6. Jackson将json字符串转换成泛型List

    Jackson,我感觉是在Java与Json之间相互转换的最快速的框架,当然Google的Gson也很不错,但是参照网上有人的性能测试,看起来还是Jackson比较快一点 Jackson处理一般的Ja ...

  7. OpenStack云计算快速入门之二:OpenStack安装与配置

    原文:http://blog.chinaunix.net/uid-22414998-id-3265685.html OpenStack云计算----快速入门(2) 该教程基于Ubuntu12.04版, ...

  8. mysql 一些命令

    show processlist; 查看服务进程列表show engines; 所有提供的引擎show variables like '%storage_engine%'; 当前默认的存储引擎show ...

  9. 使用Sqlserver更新锁防止数据脏读

    有时候我们需要控制某条记录在程序读取后就不再进行更新,直到事务执行完释放后才可以.这时候我们就可以将所有要操作当前记录的查询加上更新锁,以防止查询后被其它事务修改.这种操作只锁定表中某行而不会锁定整个 ...

  10. 常用Linux命令记录

    [RSYNC] 指定SSH端口从远程服务器同步文件至本地目录 rsync -avH --progress '-e ssh -p 3600' user@remote_ip:remote_dir  loc ...