AI论文解读丨融合视觉、语义、关系多模态信息的文档版面分析架构VSR
摘要:文档版式分析任务中,文档的视觉信息、文本信息、各版式部件间的关系信息都对分析过程具有很重要的作用。本文提出一种融合视觉、文本、关系多模态信息的版式分析架构VSR。
本文分享自华为云社区《论文解读系列十八:融合视觉、语义、关系多模态信息的文档版面分析架构VSR》,作者: 小菜鸟chg 。

现有文档版面分析方法大致可分为两种:基于NLP的方法将版面分析任务看作是序列标签分类任务(sequence labeling),但是该类方法在版面建模上表现出不足,无法捕获空间信息;基于CV的方法则将版面分析看作是目标检测或分割任务(object detection or segmentation),该类方法的不足表现在(1)缺乏细粒度的语义、(2)简单的拼接方式、(3)未利用关系信息。如图1展示的VSR的motivation示意图,为解决上述各方法的局限性问题,本文提出一种融合视觉、文本、关系多模态信息的版式分析架构VSR (Vision, Semantic, Relation)。

图1 VSR的motivation示意图
1. 问题定义
版式分析任务既可当做序列标签分类,又可当做目标检测。主要区别在于部件候选(component candidates)的选择。对于基于NLP方法,即序列标签分类的定义,选择通过pdf解析或OCR识别得到text tokens;对于基于CV方法,即目标检测或分割的定义,选择通过目标检测网络如Mask RCNN得到的区域RoI。VSR主要围绕目标检测的定义展开,同时VSR也可以很直接地应用到基于NLP的方法上。
2. VSR架构
VSR架构如图2所示,主要包括三个模块:双流卷积网络(two-stream ConvNets)、多尺度自适应聚合模块、关系学习模块。首先,双流卷积网络提取视觉和语义特征;然后,相对于简单的拼接,多尺寸自适应聚合模块来得到视觉和语义双模态信息表示;接着,基于聚合的多模态信息表示,可以生成布局组件候选集;最后,关系学习模块来学习各组件候选间的关系,并生成最终结果。下面对各模块具体展开。

图2 VSR架构图
2.1 双流卷积网络
VSR采用双流卷积神经网络(本文采用的是ResNeXt-101)来分别提取图像视觉信息和文本语义信息。
视觉ConvNet

语义ConvNet

2.2 多尺寸自适应聚合模块

2.3 关系学习模块
在得到FM后,可以通过RPN网络很容易得到ROI(Region of Interest)作为布局部件候选集。本文在实验阶段选择的是Mask RCNN,同时设置7个anchor比例(0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0)(0.02,0.05,0.1,0.2,0.5,1.0,2.0)得到部件候选集。如图3所示,根据各部件候选之间的关系,可以有如下作用:(1)利用空间位置关系,调整文本框坐标;(2)根据部件间的共现关系(比如表格和表格标题一般会同时出现)修正预测标签;(3)各component间不重叠的特性移除多余框。VSR中关系学习模块对各部件候选间的关系进行建模,并最终得到版面分析的结果。

图3 VSR关系学习模块作用示意图
将一篇文档作为一张图graph,而每个部件候选component candidate作为节点node。每个节点的特征表示由多模态特征表示和位置信息表示组成:

2.4 优化训练

3. 实验结果
3.1 对比实验
VSR在三个开源数据集Article Regions,PubLayNet,DocBank上取得了最优结果。



3.2 消融实验
表5、表6、表7的实验结果分别验证了A.不同粒度的文本表示;B.双流卷积网络和聚合模块;C.关系学习模块三个部分的有效性。


4. 总结
VSR方法的三个重要部分如下:
(1)文本语义用character和sentence两种粒度来表示;
(2)采用two-stream convnet来分别提取视觉和语义特征,再通过attention将两个模态特征聚合,最后基于聚合特征得到component candidates;
(3)GNN即Self attention来学习各component candidates间的关系。
AI论文解读丨融合视觉、语义、关系多模态信息的文档版面分析架构VSR的更多相关文章
- 论文解读丨表格识别模型TableMaster
摘要:在此解决方案中把表格识别分成了四个部分:表格结构序列识别.文字检测.文字识别.单元格和文字框对齐.其中表格结构序列识别用到的模型是基于Master修改的,文字检测模型用到的是PSENet,文字识 ...
- 知识图谱-生物信息学-医学顶刊论文(Bioinformatics-2021)-MSTE: 基于多向语义关系的有效KGE用于多药副作用预测
MSTE: 基于多向语义关系的有效KGE用于多药副作用预测 论文标题: Effective knowledge graph embeddings based on multidirectional s ...
- 论文解读丨基于局部特征保留的图卷积神经网络架构(LPD-GCN)
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留 ...
- 医学AI论文解读 |Circulation|2018| 超声心动图的全自动检测在临床上的应用
文章来自微信公众号:机器学习炼丹术.号主炼丹兄WX:cyx645016617.文章有问题或者想交流的话欢迎- 参考目录: @ 目录 0 论文 1 概述 2 pipeline 3 技术细节 3.1 预处 ...
- 论文解读丨【CVPR 2022】不使用人工标注提升文字识别器性能
摘要:本文提出了一种针对文字识别的半监督方法.区别于常见的半监督方法,本文的针对文字识别这类序列识别问题做出了特定的设计. 本文分享自华为云社区<[CVPR 2022] 不使用人工标注提升文字识 ...
- [论文解读] 阿里DIEN整体代码结构
[论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...
- 百度大脑UNIT3.0解读之对话式文档问答——上传文档获取对话能力
在日常生活中,用户会经常碰到很多复杂的规章制度.规则条款.比如:乘坐飞机时,能不能带宠物上飞机,3岁小朋友是否需要买票等.在工作中,也会面对公司多样的规定制度和报销政策.比如:商业保险理赔需要什么材料 ...
- 加速 Document AI (文档智能) 发展
在企业的数字工作流中充满了各种文档,包括信件.发票.表格.报告.收据等,我们无法自动提取它们的知识.如今随着文本.视觉和多模态人工智能的进步,我们有可能解锁这些知识,这篇文章向你展示了你的团队该如何使 ...
- 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...
- CVPR2020论文解读:三维语义分割3D Semantic Segmentation
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3 ...
随机推荐
- tunm, 一种对标JSON的二进制数据协议
Tunm simple binary proto 一种对标JSON的二进制数据协议 支持的数据类型 基本支持的类型 "u8", "i8", "u16& ...
- YbtOJ 「动态规划」第5章 状压DP
犹豫了许久还是决定试试始终学不会的状压 dp.(上一次学这东西可能还是两年前的网课,显然当时在摸鱼一句都没听/kk 果然还是太菜. 例题1.种植方案 设 \(f_{i,j}\) 表示第 \(i\) 行 ...
- 20.3 OpenSSL 对称AES加解密算法
AES算法是一种对称加密算法,全称为高级加密标准(Advanced Encryption Standard).它是一种分组密码,以128比特为一个分组进行加密,其密钥长度可以是128比特.192比特或 ...
- vscode 切换分支时报错:The following untracked working tree files would be overwritten .....
执行命令:git clean -d -fx 表示删除 一些 没有 git add 的 文件: git clean 参数 -n 显示将要删除的文件和目录: -x -----删除忽略文件已经对git来 ...
- nginx参数调优能提升多少性能
前言 nginx安装后一般都会进行参数优化,网上找找也有很多相关文章,但是这些参数优化对Nginx性能会有多大影响?为此我做个简单的实验测试下这些参数能提升多少性能. 声明一下,测试流程比较简单,后端 ...
- Chromium gclient使用
gclient 是由 Google 用 Python 开发的一套跨平台的git仓库管理工具,它的作用类似 git 的 submodule,用来将多个git仓库组成一个solution进行管理,比如ch ...
- Redis Functions 介绍之一
Redis提供了编程接口(programming interface)可以让你在Redis服务器端执行客户的脚本. 一个重大的变化就是从Redis 7开始,你可以选择使用Redis Functions ...
- WPF --- TextBox的输入校验
引言 在WPF应用程序开发中,数据校验是确保用户输入数据的正确性和完整性的重要一环. 之前在做一些参数配置功能时,最是头疼各种参数校验,查阅一些资料后,我总结了数据校验方式有两种: Validatio ...
- windows10 使用 USB 无线网卡的热点功能
一.概述 在某宝上买了一个 COMFAST CF-727B 的无线模块,由于笔记本电脑一直使用不上,所以放了很久.多年后我来到了一个公司,遇到了我此生最想吐槽的网管,简直不敢想象几十人的办公室,居然能 ...
- L2-033 简单计算器
#include <bits/stdc++.h> using namespace std; int cal(int a, int b, char c) { int t; if (c == ...