POJ - 1330

Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %lld & %llu

Submit Status

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

这是一道裸LCA,给你一个有根树,再给你两个点判断其最近公共祖先,可以用tarjan解决

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#define X first
#define Y second
using namespace std;
typedef pair<int,int> pii;
const int maxn=;
int f[maxn],n,LCA[maxn],in[maxn],vis[maxn],R;
vector<int> V[maxn];
pii P;
void init()
{
for (int i=; i<=n; i++)
V[i].clear(),f[i]=i;
memset(LCA,,sizeof(LCA));
memset(vis,,sizeof(vis));
memset(in,,sizeof(in));
}
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
int mix(int x,int y)
{
int fx=find(x),fy=find(y);
if (fx==fy) return ;
f[fx]=fy;
return ;
}
void Tarjan(int root)
{
vis[root]=;
if (P.X==root&&vis[P.Y])
{
LCA[R]=find(P.Y);
return ;//因为只有一条边,找到直接return
}
if (P.Y==root&&vis[P.X])
{
LCA[R]=find(P.X);
return ;
}
for (int i=; i<V[root].size(); i++)
{
if (!vis[V[root][i]]);
Tarjan(V[root][i]);
f[V[root][i]]=root;
}
}
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
int a,b;
scanf("%d",&n);
init();
for (int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
if (a!=b)
{
in[b]++;//in记录入度
V[a].push_back(b);
}
}
scanf("%d%d",&a,&b);
P.X=a,P.Y=b;
for (int i=;i<=n;i++)
if (in[i]==)//根节点的入度为0
{
R=i;//R为根节点
Tarjan(i);
printf("%d\n",LCA[R]);
break;
}
}
return ;
}

POJ - 1330 Nearest Common Ancestors(基础LCA)的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  2. POJ 1330 Nearest Common Ancestors 【LCA模板题】

    任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000 ...

  3. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

  4. poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30147   Accept ...

  5. 【POJ 1330 Nearest Common Ancestors】LCA问题 Tarjan算法

    题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...

  6. POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)

    题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...

  7. poj 1330 Nearest Common Ancestors(LCA:最近公共祖先)

    多校第七场考了一道lca,那么就挑一道水题学习一下吧= = 最简单暴力的方法:建好树后,输入询问的点u,v,先把u全部的祖先标记掉,然后沿着v->rt(根)的顺序检查,第一个被u标记的点即为u, ...

  8. POJ 1330:Nearest Common Ancestors【lca】

    题目大意:唔 就是给你一棵树 和两个点,问你这两个点的LCA是什么 思路:LCA的模板题,要注意的是在并查集合并的时候并不是随意的,而是把叶子节点合到父节点上 #include<cstdio&g ...

  9. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

随机推荐

  1. 从零开始学C++之构造函数与析构函数(三):深拷贝与浅拷贝、空类

    一.深拷贝与浅拷贝 说得简单点,假设一个类有指针成员,如果在拷贝的时候顺带连指针指向的内存也分配了,就称为深拷贝:如果只是分配指针本身的内存,那就是浅拷贝.浅拷贝造成的问题是有两个指针指向同块内存,d ...

  2. Js-Html 前端系列--checkbox

    今天搞全选按钮,设置Checkbox的时候,处于Checked状态但是不显示勾.最后得出解决方案: var c = boxcList.eq(i).attr("checked"); ...

  3. 自定义session扫描器

    为何要自定义session扫描器 由于服务器来管理session的销毁不怎么靠谱,因此很多网站都会自己定义一个session扫描器来管理session的创建和销毁. 实现思路 首先,创建一个sessi ...

  4. 遇到delphi连接sql一个奇怪的问题:未指定的错误,加大了命令的等待时间为600即可了

    遇到delphi连接sql一个奇怪的问题:未指定的错误,加大了命令的等待时间为600即可了 找了一下午没解决.

  5. shell-正则表达式

    证则表达式:在计算机科学中,是指一个用来描述或者匹配一系列符合某个句法规则的字符串的单个字符串.在很多文本编辑器或其他工具里,正则表达式通常被用来检索和/或替换那些符合某个模式的文本内容.许多程序设计 ...

  6. dev gridcontrol 绑定int型及日期型的列默认当值为0时显示空白及格式化日期显示方式

    xmlns:sys="clr-namespace:System;assembly=mscorlib" 如只显示日期的时间部分 <dxg:GridColumn Header=& ...

  7. Maven之(五)Maven仓库

    本地仓库 Maven一个很突出的功能就是jar包管理,一旦工程需要依赖哪些jar包,只需要在Maven的pom.xml配置一下,该jar包就会自动引入工程目录.初次听来会觉得很神奇,下面我们来探究一下 ...

  8. 【jQuery、原生】键盘键入两位小数

    jquery的处理办法 <!doctype html> <html lang="en"> <head> <meta charset=&qu ...

  9. Amdahl's Law

    Amdahl's Law 程序可能的加速比取决于可以被并行化的部分. 如果没有可以被并行化的部分,则P=0,speedup=1,no speedup. 如果全部可以被并行化,P=1,speedup i ...

  10. 循序渐进看Java web日志跟踪(3)-Log4J的使用和配置

    之前说过关于java日志跟踪的几大主要用的框架,也说到了,其实在其中,Log4J充当着一个相当重要的角色.目前,大部分框架也都是采用的是Log4J,虽然说它已经停止了更新,作者也重新起了LogBack ...