POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330
Description A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. Write a program that finds the nearest common ancestor of two distinct nodes in a tree. Input The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.
Output Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.
Sample Input 2 Sample Output 4 Source |
这是一道裸LCA,给你一个有根树,再给你两个点判断其最近公共祖先,可以用tarjan解决
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#define X first
#define Y second
using namespace std;
typedef pair<int,int> pii;
const int maxn=;
int f[maxn],n,LCA[maxn],in[maxn],vis[maxn],R;
vector<int> V[maxn];
pii P;
void init()
{
for (int i=; i<=n; i++)
V[i].clear(),f[i]=i;
memset(LCA,,sizeof(LCA));
memset(vis,,sizeof(vis));
memset(in,,sizeof(in));
}
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
int mix(int x,int y)
{
int fx=find(x),fy=find(y);
if (fx==fy) return ;
f[fx]=fy;
return ;
}
void Tarjan(int root)
{
vis[root]=;
if (P.X==root&&vis[P.Y])
{
LCA[R]=find(P.Y);
return ;//因为只有一条边,找到直接return
}
if (P.Y==root&&vis[P.X])
{
LCA[R]=find(P.X);
return ;
}
for (int i=; i<V[root].size(); i++)
{
if (!vis[V[root][i]]);
Tarjan(V[root][i]);
f[V[root][i]]=root;
}
}
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
int a,b;
scanf("%d",&n);
init();
for (int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
if (a!=b)
{
in[b]++;//in记录入度
V[a].push_back(b);
}
}
scanf("%d%d",&a,&b);
P.X=a,P.Y=b;
for (int i=;i<=n;i++)
if (in[i]==)//根节点的入度为0
{
R=i;//R为根节点
Tarjan(i);
printf("%d\n",LCA[R]);
break;
}
}
return ;
}
POJ - 1330 Nearest Common Ancestors(基础LCA)的更多相关文章
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- POJ 1330 Nearest Common Ancestors 【LCA模板题】
任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000 ...
- POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14902 Accept ...
- poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 30147 Accept ...
- 【POJ 1330 Nearest Common Ancestors】LCA问题 Tarjan算法
题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...
- POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)
题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...
- poj 1330 Nearest Common Ancestors(LCA:最近公共祖先)
多校第七场考了一道lca,那么就挑一道水题学习一下吧= = 最简单暴力的方法:建好树后,输入询问的点u,v,先把u全部的祖先标记掉,然后沿着v->rt(根)的顺序检查,第一个被u标记的点即为u, ...
- POJ 1330:Nearest Common Ancestors【lca】
题目大意:唔 就是给你一棵树 和两个点,问你这两个点的LCA是什么 思路:LCA的模板题,要注意的是在并查集合并的时候并不是随意的,而是把叶子节点合到父节点上 #include<cstdio&g ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
随机推荐
- 管道函数(pipelined function)简单使用示例
-----------------------------Cryking原创------------------------------ -----------------------转载请注明出处, ...
- Android——另外一种增删查改的方式(ContentProvider常用)
以下介绍另外一种增删查改的方式 package com.njupt.sqllist; import java.util.ArrayList; import java.util.List; import ...
- 克隆虚拟机win8系统后注意修改安全标识(SID)
克隆虚拟机win8系统后注意修改安全标识(SID) 克隆虚拟机系统后两个系统硬件配置一样,需要注意修改:security ID ,MAC,计算机名,IP地址,产品激活 重置工具:sysprep.e ...
- 看完这篇文章才对【GIT】有了大彻大悟的认识
git定义:版本管理工具 历史:没有git的时候,我们修改完一个文件,要先把文件拷贝一个副本到备份文件夹中,还要建个文档来记录当前文件的信息和操作记录.当文件多的时候,人工操作起来将是个非常辛苦非常庞 ...
- C# 关于委托的小例子
本例子是一个关于委托的小例子[猫叫,狗跳,人喊]. 委托是C#开发中一个非常重要的概念,理解起来也和常规的方法不同,但一旦理解清楚,就可以信手拈来,随处可用. 委托是对方法的抽象.它存储的就是一系列具 ...
- Python高手之路【十二】面向对象设计模式
单例模式 单例,顾名思义单个实例. class Person: __instance = None def __init__(self): pass @staticmethod def getInst ...
- docker--------------实践(转载)
在私有云的容器化过程中,我们并不是白手起家开始的.而是接入了公司已经运行了多年的多个系统,包括自动编译打包,自动部署,日志监控,服务治理等等系统.在容器化之前,基础设施主要以物理机和虚拟机为主.因此, ...
- __import__简介
__import__() import 语句通过调用__import__()来完成工作,提供这个函数是为了让有特殊需要的用户覆盖他,实现自定义.__import__最大的好处就是可以使程序在r ...
- Santa Claus and Tangerines
Santa Claus and Tangerines 题目链接:http://codeforces.com/contest/752/problem/E 二分 显然直接求答案并不是很容易,于是我们将其转 ...
- Web window.print() 打印
web打印 window.print() 我只给出比较有效的,方便的打印方法,有些WEB打印是调用ActiveX控件的,这样就需要用户去修改自己IE浏览器的Internet选项里的安全里的Active ...