1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3}

画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言。

解析:

 

a

b

0

{0,1}

0

1

2

2

3

3

 

状态转换图如下:

                      

识别语言为:(a | b)*abb

2.NFA 确定化为 DFA

1.解决多值映射:子集法

1). 上述练习1的NFA

解析:

根据1的NFA构造DFA状态转换矩阵如下:

a

b

A

{0}

{0,1}

{0}

B

{0,1}

{0,1}

{0,2}

C

{0,2}

{0,1}

{0,3}

D

{0,3}

{0,1}

{0}

  根据1的NFA构造DFA状态转换图如下:

  

  识别语言:b*aa*(ba)*bb, 与1的NFA的识别的语言相同,都是以abb结尾的字符串的集合。

2). P64页练习3

状态转换矩阵如下:

 

0

1

A

{S}

{Q,V}

{Q,U}

B

{Q,V}

{V,Z}

{Q,U}

C

{V,Z}

{Z}

{Z}

D

{Q,U}

{V}

{Q,U,Z}

E

{V}

{Z}

F

{Q,U,Z}

{V,Z}

{Q,U,Z}

G

{Z}

{Z}

{Z}

状态转换图如下:

                          

2.解决空弧:对初态和所有新状态求ε-闭包

1). 发给大家的图2

解析:

识别语言:0*(11*2 | 2)2*

2).P50图3.6

子集法:

f(q,a)={q1,q2,…,qn},状态集的子集

将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合。

步骤:

1).根据NFA构造DFA状态转换矩阵

①确定DFA的字母表,初态(NFA的所有初态集)

②从初态出发,经字母表到达的状态集看成一个新状态

③将新状态添加到DFA状态集

④重复23步骤,直到没有新的DFA状态

2).画出DFA

3).看NFA和DFA识别的符号串是否一致。

解析:

 识别语言:(a | bb*a)a*(ba)*bb((bb*aa*(ba)*bb)* | (aa*(ba)*bb)*)

编译原理:非确定的自动机NFA确定化为DFA的更多相关文章

  1. 编译原理之非确定的自动机NFA确定化为DFA

    1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3} 画出状态转换矩阵 ...

  2. 非确定的自动机NFA确定化为DFA

    摘要: 在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确 ...

  3. 第八次作业-非确定的自动机NFA确定化为DFA

    NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...

  4. 作业八——非确定的自动机NFA确定化为DFA

    NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...

  5. 第八次——非确定的自动机NFA确定化为DFA

    NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...

  6. 第八次-非确定的自动机NFA确定化为DFA

     提交作业 NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. ...

  7. NFA转化为DFA

    NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意 ...

  8. 编译原理-非确定有穷自动机(nondeterministic finite automata,NFA)

    是一个五元组,M=(S,∑,f,S0,F) S:有穷状态集 ∑:输入字母表(有穷) f:f(S,α)=S' 表示从一个状态S出发,识别了一个字α后,可以到达S'这个状态集合之间的某一个状态(可能的后继 ...

  9. 编译原理 | 构造LR(1)自动机的注意事项

    在画图之前,有时候要先对产生式集合进行某些操作. 下图所示的情况,不需要补一条拓广产生式,因为开始符Z没有出现在某条产生式的右侧. 即,如果开始符出现在某条产生式的右部,需要增加拓广产生式.

随机推荐

  1. ip修改成域名

    将ip修改成域名,这样的话可以使程序变得更加健壮,别人不能直接看见你的ip地址. 后来总结下分享给大家.首先找到hosts文件的位置,这个文件是系统dns默认查找的文件. windows 系统:C:\ ...

  2. C语言程序设计100例之(31):全排列问题

    例31   全排列问题 题目描述 输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字. 输入格式 n(1≤n≤9) 输出格式 由1-n组成的所有不重复的数字 ...

  3. 对象深拷贝deepCopy

    function type(obj){ return Object.prototype.toString.call(obj).slice(8,-1); } function deepCopy(targ ...

  4. Django开发框架知识点

    一.什么是web服务器(了解) 当我们在浏览器输入URL后,浏览器会先请求DNS服务器,获得请求站点的 IP 地址.然后发送一个HTTP Request(请求)给拥有该 IP 的主机,接着就会接收到服 ...

  5. CVE-2020-1947 Sharding-UI的反序列化复现及分析

    CVE-2020-1947 复现及分析 0x01 影响 Apache ShardingSphere < =4.0.0 0x02 环境搭建 incubator-shardingsphere 的ui ...

  6. vue如何新建一个项目

    第一步:安装node 首先下载安装node 安装步骤参考:https://www.cnblogs.com/qdwz/p/10820554.html window+R打开控制命令行cmd node -v ...

  7. 【音视频连载-001】基础学习篇- SDL 介绍以及工程配置

    技术开发故事会连载 这是音视频基础学习系列的第一篇文章,主要讲解 SDL 是什么以及为什么要用到它,看似和音视频没啥卵关系,其实必不可少. SDL 简介 SDL 是 "Simple Dire ...

  8. MySQL中SQL Mode的查看与设置

    MySQL可以运行在不同的模式下,而且可以在不同的场景下运行不同的模式,这主要取决于系统变量 sql_mode 的值.本文主要介绍一下这个值的查看与设置,主要在Mac系统下. 对于每个模式的意义和作用 ...

  9. Python面向对象之:三大特性:继承,封装,多态以及类的约束

    前言: python面向对象的三大特性:继承,封装,多态. 1. 封装: 把很多数据封装到⼀个对象中. 把固定功能的代码封装到⼀个代码块, 函数, 对象, 打包成模块. 这都属于封装的思想. 具体的情 ...

  10. Go 的 http 包的源码,通过代码我们可以看到整个的 http 处理过程

    func (srv *Server) Serve(l net.Listener) error {defer l.Close() var tempDelay time.Duration // how l ...