深入浅出K-Means算法

摘要:

在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。

K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法

算法概要

这个算法其实很简单,如下图所示:

从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。

然后,K-Means的算法如下:

  1. 随机在图中取K(这里K=2)个种子点。
  2. 然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)
  3. 接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)
  4. 然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。

这个算法很简单,但是有些细节我要提一下,求距离的公式我不说了,大家有初中毕业水平的人都应该知道怎么算的。我重点想说一下“求点群中心的算法”。

求点群中心的算法

一般来说,求点群中心点的算法你可以很简的使用各个点的X/Y坐标的平均值。不过,我这里想告诉大家另三个求中心点的的公式:

1)Minkowski Distance公式——λ可以随意取值,可以是负数,也可以是正数,或是无穷大。

2)Euclidean Distance公式——也就是第一个公式λ=2的情况

3)CityBlock Distance公式——也就是第一个公式λ=1的情况

这三个公式的求中心点有一些不一样的地方,我们看下图(对于第一个λ在0-1之间)。

(1)Minkowski Distance (2)Euclidean Distance (3) CityBlock Distance

上面这几个图的大意是他们是怎么个逼近中心的,第一个图以星形的方式,第二个图以同心圆的方式,第三个图以菱形的方式。

K-Means的演示

如果你以”K Means Demo“为关键字到Google里查你可以查到很多演示。这里推荐一个演示:http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

操作是,鼠标左键是初始化点,右键初始化“种子点”,然后勾选“Show History”可以看到一步一步的迭代。

注:这个演示的链接也有一个不错的K Means Tutorial

K-Means++算法

K-Means主要有两个最重大的缺陷——都和初始值有关:

  • K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)

  • K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)

我在这里重点说一下K-Means++算法步骤:

  1. 先从我们的数据库随机挑个随机点当“种子点”。
  2. 对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
  3. 然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
  4. 重复第(2)和第(3)步直到所有的K个种子点都被选出来。
  5. 进行K-Means算法。

相关的代码你可以在这里找到“implement the K-means++ algorithm”(墙)另,Apache的通用数据学库也实现了这一算法

K-Means算法应用

看到这里,你会说,K-Means算法看来很简单,而且好像就是在玩坐标点,没什么真实用处。而且,这个算法缺陷很多,还不如人工呢。是的,前面的例子只是玩二维坐标点,的确没什么意思。但是你想一下下面的几个问题:

1)如果不是二维的,是多维的,如5维的,那么,就只能用计算机来计算了。

2)二维坐标点的X,Y 坐标,其实是一种向量,是一种数学抽象。现实世界中很多属性是可以抽象成向量的,比如,我们的年龄,我们的喜好,我们的商品,等等,能抽象成向量的目的就是可以让计算机知道某两个属性间的距离。如:我们认为,18岁的人离24岁的人的距离要比离12岁的距离要近,鞋子这个商品离衣服这个商品的距离要比电脑要近,等等。

只要能把现实世界的物体的属性抽象成向量,就可以用K-Means算法来归类了

在《k均值聚类(K-means)》 这篇文章中举了一个很不错的应用例子,作者用亚洲15支足球队的2005年到1010年的战绩做了一个向量表,然后用K-Means把球队归类,得出了下面的结果,呵呵。

  • 亚洲一流:日本,韩国,伊朗,沙特
  • 亚洲二流:乌兹别克斯坦,巴林,朝鲜
  • 亚洲三流:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼

其实,这样的业务例子还有很多,比如,分析一个公司的客户分类,这样可以对不同的客户使用不同的商业策略,或是电子商务中分析商品相似度,归类商品,从而可以使用一些不同的销售策略,等等。

数据聚类算法-K-means算法的更多相关文章

  1. 第4章 最基础的分类算法-k近邻算法

    思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train ...

  2. 聚类算法:K-means 算法(k均值算法)

    k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...

  3. 分类算法----k近邻算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  4. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  5. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  6. python 机器学习(二)分类算法-k近邻算法

      一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...

  7. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  8. 【机器学习】聚类算法——K均值算法(k-means)

    一.聚类 1.基于划分的聚类:k-means.k-medoids(每个类别找一个样本来代表).Clarans 2.基于层次的聚类:(1)自底向上的凝聚方法,比如Agnes (2)自上而下的分裂方法,比 ...

  9. 【学习笔记】分类算法-k近邻算法

    k-近邻算法采用测量不同特征值之间的距离来进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 使用数据范围:数值型和标称型 用例子来理解k-近邻算法 电影可以按 ...

  10. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

随机推荐

  1. six库 解决python2的项目如何能够完全迁移到python3

    six库 解决python2的项目如何能够完全迁移到python3 SIX是用于python2与python3兼容的库. 它存在的目的是为了拥有无需修改即可在Python 2和Python 3上同时工 ...

  2. yield浅析-Python3

    yield 浅析 先来一段代码: def fun1(): for i in range(5): yield i print("继续调用继续执行") gen1 = fun1() pr ...

  3. mysql事务、redo日志、undo日志、checkpoint详解

    转载: https://zhuanlan.zhihu.com/p/34650908 事务: 说起mysql innodb存储引擎的事务,首先想到就是ACID(不知道的请google),数据库是如何做到 ...

  4. Amoeba 实现MySQL读写分离

    Amoeba是一个以MySQL为底层数据存储,并对应用提供MySQL协议接口的proxy,它集中地响应应用的请求,依据用户事先设置的规则,将SQL请求发送到特定的数据库上执行.基于此可以实现负载均衡. ...

  5. [Nest] 05.nest之数据库

    数据库 Nest 与数据库无关,允许您轻松地与任何 SQL 或 NoSQL 数据库集成.根据您的偏好,您有许多可用的选项.一般来说,将 Nest 连接到数据库只需为数据库加载一个适当的 Node.js ...

  6. Binding的简单使用

    Binding可以看作是数据的桥梁,两端分别为Source和Target,一般情况,Source是逻辑层的对象,Target是UI层的控件对象,可以将数据从逻辑层送往UI层展现 简单的例子: clas ...

  7. 机器学习-SVM-核函数

    SVM-核函数 在研究了一天的SVM核函数后,我顿悟了一个道理: 研究和使用核函数的人,从一开始的目的就是把data分开而已.高维和映射,都是原来解释操作合理性的,但根本不是进行这一操作的原因 我为什 ...

  8. openlayers之全屏控件的使用

    import { FullScreen } from 'ol/control' map.addControl(new FullScreen())

  9. 关于sqlmap的两个小坑

    i春秋作家:__LSA__ 0x00 概述 近日在利用sqlmap注入测试时遇到一个奇怪的现象,高版本sqlmap无法检测出注入,但是低版本的可以测出注入,并且能跑出数据不是误报,经过对比测试和查看s ...

  10. Delphi Form组件