使用word2vec对中文维基百科数据进行处理
一.下载中文维基百科数据https://dumps.wikimedia.org/zhwiki/
并使用gensim中的wikicorpus解析提取xml中的内容
二.利用opencc繁体转简体
三.利用jieba对转换后的文本进行分词,去停词
四.利用gensim中的word2vec训练分词后的文本
五.测试
python代码如下:
#!/user/bin/python
#coding:utf-8
__author__ = 'yan.shi'
from gensim.corpora import WikiCorpus
import opencc
import jieba
import codecs
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
import multiprocessing '''
读取中文wiki语料库,并解析提取xml中的内容
'''
def dataprocess():
space=b' '
i=0
output=open('E:\zhwiki-articles.txt','wb')
wiki=WikiCorpus('E:\zhwiki-latest-pages-articles.xml.bz2',lemmatize=False,dictionary={})
for text in wiki.get_texts():
output.write(space.join(text)+b'\n')
i=i+1
if(i%10000==0):
print('Saved '+str(i)+' articles')
output.close()
print('Finished Saved '+str(i)+' articles') '''
加载停用词表
'''
def createstoplist(stoppath):
print('load stopwords...')
stoplist=[line.strip() for line in codecs.open(stoppath,'r',encoding='utf-8').readlines()]
stopwords={}.fromkeys(stoplist)
return stopwords '''
过滤英文
'''
def isAlpha(word):
try:
return word.encode('ascii').isalpha()
except UnicodeEncodeError:
return False '''
opencc繁体转简体,jieba中文分词
'''
def trans_seg():
stopwords=createstoplist('E:\stopwords.txt')
cc=opencc.OpenCC('t2s')
i=0
with codecs.open('E:\zhwiki-segment.txt','w','utf-8') as wopen:
print('开始...')
with codecs.open('E:\wiki-utf8.txt','r','utf-8') as ropen:
while True:
line=ropen.readline().strip()
i+=1
print('line '+str(i))
text=''
for char in line.split():
if isAlpha(char):
continue
char=cc.convert(char)
text+=char
words=jieba.cut(text)
seg=''
for word in words:
if word not in stopwords:
if len(word)>1 and isAlpha(word)==False: #去掉长度小于1的词和英文
if word !='\t':
seg+=word+' '
wopen.write(seg+'\n')
print('结束!') '''
利用gensim中的word2vec训练词向量
'''
def word2vec():
print('Start...')
rawdata='G:\python workspace\zhwiki-segment.txt'
modelpath='G:\python workspace\modeldata.model'
#vectorpath='E:\word2vec\vector'
model=Word2Vec(LineSentence(rawdata),size=400,window=5,min_count=5,workers=multiprocessing.cpu_count())#参数说明,gensim函数库的Word2Vec的参数说明
model.save(modelpath)
#model.wv.save_word2vec_format(vectorpath,binary=False)
print("Finished!") def wordsimilarity():
model=Word2Vec.load('E:\word2vec\modeldata.model')
semi=''
try:
semi=model.most_similar('日本'.decode('utf-8'),topn=10)#python3以上就不需要decode
except KeyError:
print('The word not in vocabulary!') #print(model[u'日本'])#打印词向量
for term in semi:
print('%s,%s' %(term[0],term[1])) if __name__=='__main__':
#dataprocess()
#trans_seg()
#word2vec()
wordsimilarity()
日本的相关词:
使用word2vec对中文维基百科数据进行处理的更多相关文章
- Windows下基于python3使用word2vec训练中文维基百科语料(二)
在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体 ...
- Windows下基于python3使用word2vec训练中文维基百科语料(一)
在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https:/ ...
- Windows下基于python3使用word2vec训练中文维基百科语料(三)
对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') fla ...
- 中文维基百科分类提取(jwpl)--构建知识图谱数据获取
首先感谢 : 1.https://blog.csdn.net/qq_39023569/article/details/88556301 2.https://www.cnblogs.com/Cheris ...
- 使用JWPL (Java Wikipedia Library)操作维基百科数据
使用JWPL (Java Wikipedia Library)操作维基百科数据 1. JWPL介绍 JWPL(Java Wikipedia Library)是一个开源的访问wikipeida数据的Ja ...
- 110G离线维基百科数据免费拿
110G离线维基百科数据免费拿.. 资料获取方式,关注公总号RaoRao1994,查看往期精彩-所有文章,即可获取资源下载链接 更多资源获取,请关注公总号RaoRao1994
- 中英文维基百科语料上的Word2Vec实验
最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了 ...
- JWPL工具处理维基百科wikipedia数据用于NLP
JWPL处理维基百科数据用于NLP 处理zhwiki JWPL是一个Wikipedia处理工具,主要功能是将Wikipedia dump的文件经过处理.优化导入mysql数据库,用于NLP过程.以下以 ...
- 搜索和浏览离线 Wikipedia 维基百科(中/英)数据工具
为什么使用离线维基百科?一是因为最近英文维基百科被封,无法访问:二是不受网络限制,使用方便,缺点是不能及时更新,可能会有不影响阅读的乱码. 目前,主要有两种工具用来搜索和浏览离线维基百科数据:Kiwi ...
随机推荐
- HDU3336 Count the string(kmp
It is well known that AekdyCoin is good at string problems as well as number theory problems. When g ...
- Django基础之模型(models)层(上)
目录 Django基础之模型(models)层 单表查询 必知必会13条 神奇的双下划线查询 多表查询 外键的字段的增删改查 表与表之间的关联查询 基于双下划线的跨表查询(连表查询) 补充知识 Dja ...
- java基础: synchronized与Lock的区别
主要区别 1. 锁机制不一样:synchronized是java内置关键字,是在JVM层面实现的,系统会监控锁的释放与否,lock是JDK代码实现的,需要手动释放,在finally块中释放.可以采用非 ...
- Java Web开发技术教程入门-数据库
补更:阅战阅勇第六天 今天阅读了这本书的第六章-访问数据.首先,这本书讲解的是MySql数据库,它是一个关系型数据库管理系统,是由瑞典MySqlAB公司开发,目前属于Oracle旗下公司.在web应用 ...
- mysql-1.1基础
笔记内容:mysql基础,创建数据库,创建表,操作数据表,操作数据,简单查询,条件查询,排序,分组,聚合,连接查询(等值连接,内连接,外链接),子查询 自己提示:脑图笔记存于网盘中 右键:新标签页打 ...
- centos7 上pip install mysqlclient的时候报错OSError: mysql_config not found,
yum install mysql-devel gcc gcc-devel python-devel
- CentOS7 安装ffmpeg
安装EPEL Release,因为安装需要使用其他的repo源,所以需要EPEL支持:yum install -y epel-release#如果出现缺少Code提示,可以: sudo rpm --i ...
- sql server case when
case具有两种格式:简单Case函数和Case搜索函数 简单case函数 实例:CASE sex when '1' then '男' when '2' then'女' els ...
- 第五篇 jQuery特效与动画
5.1 show()与hide()方法 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &quo ...
- mysql架构总结
1.单机架构模式,多用于测试,实际生产中需优化: 2.一主多从,主数据库读和写,从数据库从主数据库同步,仅负责读,可解决一定访问量的需求: 3.MHA(Master High Availability ...