洛谷 P4306 [JSOI2010]连通数

洛谷传送门

题目描述

度量一个有向图联通情况的一个指标是连通数,指图中可达顶点对个的个数。

如图

顶点 11 可达 1,2,3,4,51, 2, 3, 4, 5

顶点 22 可达 2,3,4,~52, 3, 4, 5

顶点 33 可达 3,4,53, 4, 5

顶点 4,~54, 5 都只能到达自身。

所以这张图的连通数为 1414。

给定一张图,请你求出它的连通数

输入格式

输入数据第一行是图顶点的数量,一个正整数N。 接下来N行,每行N个字符。第i行第j列的1表示顶点i到j有边,0则表示无边。

输出格式

输出一行一个整数,表示该图的连通数。

输入输出样例

输入 #1复制

输出 #1复制

说明/提示

对于100%的数据,N不超过2000。

题解:

好不容易碰上一道紫水题

人生中首次自己自主AC紫题,感觉比我国爆破第一颗原子弹还激动...

大家都使用的tarjan缩点、反向建图等正解做法,但是这些复杂图论我不是很会。

我一开始想到的是SPFA,我每个点跑一遍最短路,跑完之后开始从1到n扫,如果dist数组被更新了就说明此点可达,累加ans。

最后直接输出即可

数据还是比较水的,请求洛谷加强数据,我这个算法的时间复杂度奇高,预期TLE5个点,但是竟然AC了...

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int n,ans;
char s[2010];
int tot,to[4000001],nxt[4000001],head[2001];
int dist[2001],v[2001];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void spfa(int start)
{
for(int i=1;i<=n;i++)
dist[i]=1e9,v[i]=0;
queue<int> q;
q.push(start);
v[start]=1;
dist[start]=0;
while(!q.empty())
{
int x=q.front();
q.pop();
v[x]=0;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(dist[y]>dist[x]+1)
{
dist[y]=dist[x]+1;
if(v[y]==0)
q.push(y),v[y]=1;
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=n;j++)
if(s[j]=='1')
add(i,j);
}
for(int i=1;i<=n;i++)
{
spfa(i);
for(int j=1;j<=n;j++)
if(dist[j]<1e9)
ans++;
}
printf("%d",ans);
return 0;
}

JSOI 2010 连通数的更多相关文章

  1. BZOJ 1823 JSOI 2010 盛宴 2-SAT

    标题效果:有着n材料的种类,m陪审团. 每种材料具有两种不同的方法.每个法官都有两个标准.做出来的每一个法官的菜必须至少满足一个需求. 问:是否有这样一个程序. 思考:2-SAT经典的内置图形问题.因 ...

  2. [JSOI 2010] 满汉全席

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1823 [算法] 2-SAT [代码] #include<bits/stdc++ ...

  3. [BZOJ2208][Jsoi2010]连通数 暴力枚举

    Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...

  4. 【BZOJ2208】[Jsoi2010]连通数 DFS

    [BZOJ2208][Jsoi2010]连通数 Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示 ...

  5. [luoguP4306][JSOI2010]连通数

    \[Yeasion\] \[Nein\] 其实我很奇怪为什么我的正解和输出\(N \times N\)的效果是一样的.....嗯,大概是\(RP\)问题吧.... 嗯首先来看一下题目: 题目描述: 度 ...

  6. [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd

    连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...

  7. Luogu P4306 JSOI2010 连通数

    tarjan有向图缩点的基础应用.把原图中某点的连通数转化为反向图中"能够到达某点的个数".缩点后,每个新点的贡献等于 原dcc大小 * f[i] 其中f[i]表示(包括该点自身) ...

  8. 如何使用本地账户"完整"安装 SharePoint Server 2010+解决“New-SPConfigurationDatabase : 无法连接到 SharePoint_Config 的 SQL Server 的数据 库 master。此数据库可能不存在,或当前用户没有连接权限。”

    注:目前看到的解决本地账户完整安装SharePoint Server 2010的解决方案如下,但是,有但是的哦: 当我们选择了"完整"模式安装SharePointServer201 ...

  9. How to accept Track changes in Microsoft Word 2010?

    "Track changes" is wonderful and remarkable tool of Microsoft Word 2010. The feature allow ...

随机推荐

  1. 运维工程师打怪升级进阶之路 V2.0

    在此之前,发布过两个版本: 运维工程师打怪升级之路 V1.0 版本发布 运维工程师打怪升级必经之路 V1.0.1 很多读者伙伴们反应总结的很系统.很全面,无论是0基础初学者,还是有基础的入门者,或者是 ...

  2. Javascript笔记:作用域和执行上下文

    一.作用域 Javascript的作用域规则是在编译阶段确定的,有声明时的位置决定. JS中有全局作用域,函数作用域,块级作用域(ES6引入). 1. 全局作用域 在整个程序生命周期内都是有效的,在任 ...

  3. ECMAScript 初探 - 基础篇

    ECMAScript 语言的标准是由 Netscape.Sun.微软.Borland 等公司基于 JavaScript 和 JScript 锤炼.定义出来的. ECMAScript 仅仅是一个描述,定 ...

  4. 关于i7 8700以上系列主机,安装虚拟机Win7下连接U盘,故障处理的补充说明

    正如前文“虚拟机下怎么连接U盘,如何使用U盘?一策书(湘岳阳万江波)的随笔”所言,我在win10下的虚拟机win7(i7 9700),而且听说了是不支持Win7的,其原因是不支持USB的驱动问题. 我 ...

  5. ROS向节点传递参数

    ROS的节点有很多中调用方式,包括rosrun,launch,直接运行等,向节点内传递参数的方式也有很多. 1. rosrun + 参数服务器传递 ros::init(argc, argv, &quo ...

  6. Lua 转义字符

    [1]Lua语言在Windows环境中的文件路径写法 示例程序如下: -- test1 local file = io.open("E:\test\100.txt", 'rb') ...

  7. java 中遍历Map的几种方法

    方法分为两类: 一类是基于map的Entry:map.entrySet(); 一类是基于map的key:map.keySet() 而每一类都有两种遍历方式: a.利用迭代器 iterator: b.利 ...

  8. 《 .NET并发编程实战》阅读指南 - 第14章

    先发表生成URL以印在书里面.等书籍正式出版销售后会公开内容.    

  9. C#集合中根据多个字段分组 group by linq表达式

    void Main() { var empList =new List<Employee> { , FName = , Sex = 'M'}, , FName = , Sex = 'F'} ...

  10. 前端跨域之Jsonp实现原理及.Net下Jsonp的实现

    jsonp的本质是通过script标签的src属性请求到服务端,拿到到服务端返回的数据 ,因为src是可以跨域的.前端通过src发送跨域请求时在请求的url带上回调函数,服务端收到请求时,接受前端传过 ...