# -*- coding: utf-8 -*-
"""
Created on Wed Jan 10 19:18:56 2018 @author: markli
"""
import numpy as np;
'''
kmeans 算法实现
算法原理
1、随机选择k个点作为聚类中心点,进行聚类
2、求出聚类后的各类的 中心点
3、由中心点作为新的聚类中心点,再次进行聚类
4、比较前后两次的聚类中心点是否发生变化,若没有变化则停止,否则重复2,3,4
''' def Kmeans(X,k,maxiter):
'''
使用Kmeans均值聚类对数据集Data进行聚类
X 数据集
k 聚类中心个数
maxiter 最大迭代次数
'''
m,n = X.shape;
#向数据集中添加一列,用来存放类别号
Dataset = np.zeros((m,n+1));
Dataset[:,:-1] = X; #随机选取k 个聚类中心
randomCenterIndex = np.random.randint(m,size=k);
center = Dataset[randomCenterIndex];
center[:,-1] = range(1,k+1); #初始聚类
oldCenter = np.copy(center);
DataClass(Dataset,center);
center = getCenter(Dataset,k); itertor = 1;
while not isStop(oldCenter,center,itertor,maxiter):
oldCenter = np.copy(center);
DataClass(Dataset,center);
center = getCenter(Dataset,k);
itertor = itertor + 1;
print("数据集聚类结果",Dataset);
print("聚类中心点",center); def DataClass(Dataset,center):
'''
对数据集进行聚类或者类标签更新
Dataset 数据集
center 聚类中心点 最后一列为聚类中心点的分类号
'''
n = Dataset.shape[0];
k = center.shape[0];
for i in range(n):
lable = center[0,-1];
mindistance = np.linalg.norm(Dataset[i,:-1]-center[0,:-1],ord=2);
for j in range(1,k):
distance = np.linalg.norm(Dataset[i,:-1]-center[j,:-1],ord=2);
if(distance < mindistance):
mindistance = distance;
lable = center[j,-1];
Dataset[i,-1] = lable; def getCenter(Dataset,k):
'''
获得数据集的k个聚类中心,数据集的最后一列是当前的分类号
Dataset 数据集
k 聚类中心点个数
'''
center = np.ones((k,Dataset.shape[1]));
for i in range(1,k+1):
DataSubset = Dataset[Dataset[:,-1] == i,:];
center[i-1] = np.mean(DataSubset,axis=0);
return center; def isStop(oldCenter,newCenter,itertor,maxiter):
'''
判断是否停止
oldCenter 前一次聚类的聚类中心
newCenter 新产生的聚类中心
itertor 当前迭代次数
maxitor 最大迭代次数
''' if(itertor >= maxiter):
return True; return np.array_equal(oldCenter,newCenter); X = np.array([[1,1],[2,1],[4,3],[5,4]]);
print(X.shape);
Kmeans(X,2,10);

Python3 kmeans 聚类算法的更多相关文章

  1. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  2. k-means聚类算法python实现

    K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...

  3. K-Means 聚类算法原理分析与代码实现

    前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...

  4. Kmeans聚类算法原理与实现

    Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...

  5. 机器学习六--K-means聚类算法

    机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...

  6. 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法

    版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...

  7. 沙湖王 | 用Scipy实现K-means聚类算法

    沙湖王 | 用Scipy实现K-means聚类算法 用Scipy实现K-means聚类算法

  8. Matlab中K-means聚类算法的使用(K-均值聚类)

    K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx, ...

  9. 运用三角不等式加速Kmeans聚类算法

    运用三角不等式加速Kmeans聚类算法 引言:最近在刷<数据挖掘导论>,第九章, 9.5.1小节有提到,可以用三角不等式,减少不必要的距离计算,从而达到加速聚类算法的目的.这在超大数据量的 ...

随机推荐

  1. NOIP2017 列队——动态开点线段树

    Description: Sylvia 是一个热爱学习的女♂孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有n×m名学生,方阵的行数为  ...

  2. Eclipse启动项目正常,放到tomcat下单独启动就报错的 一例

    一个老的ssh的项目,进行二次开发(增加一些新功能)后, 首先用Eclipse中集成的Tomcat启动没有任何问题,但是把启动后的webapps下得目录放到 windows的普通tomcat下单独启动 ...

  3. maven 整合支付宝,导入alipay-sdk-java包到本地仓库

    maven 整合支付宝,导入alipay-sdk-java包到本地仓库   1.环境变量添加: MAVEN_HOME:(maven位置) M2_HOME:(maven位置) PATH:%M2_HOME ...

  4. android adb介绍

    1. 什么是adb 在SDK的Tools文件夹下包含着Android模拟器操作的重要命令ADB,ADB的全称为Android Debug Bridge,就是调试桥的作用.可以与模拟器或android设 ...

  5. Lua程序设计(四)面向对象类继承

    1.类继承 ①代码 Sharp = { _val = } --① 父类 function Sharp:new() local new_sharp = { } self.__index = self - ...

  6. 程序员与HR博弈之:有城府的表达你的兴趣爱好

    “面试”这个过程说简单其实也能很简单.譬如急需招某种技能的单位会因为你拥有某方面的经验或特长立马录取你,哪怕你其他方面表现的很“烂”. 从广义上来讲,很多公司尤其是大中型公司的招聘,并不是因为急缺某岗 ...

  7. 20155314 2016-2017-2 《Java程序设计》第7周学习总结

    20155314 2016-2017-2 <Java程序设计>第7周学习总结 教材学习内容总结 了解Lambda语法 了解方法引用 了解Fucntional与Stream API 掌握Da ...

  8. NOIP2016-D2-T2 蚯蚓(单调队列)

    构建三个单调队列(用STL),分别储存未切的蚯蚓,切后的第一段,切后的第二段,即可简单证明其单调性. 证明:设$q$为单调队列$\because a_1 \geqslant a_2 \geqslant ...

  9. 02 workerman之GatewayWorker简单的demo 实现两端发送消息

    前端代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <t ...

  10. spring的普通类中获取session和request对像

    在使用spring时,经常需要在普通类中获取session,request等对像. 1.第一钟方式,针对Spring和Struts2集成的项目: 在有使用struts2时,因为struts2有一个接口 ...